

2014-03-11
www.roxen.com

Roxen CMS 5.4
XSLT Tutorial

 2

 Roxen Internet Software AB
© 2011 Roxen Internet Software AB.
All rights reserved.

Under the copyright laws, this
document may not be copied, in
whole or in part, without the written
consent of Roxen Internet Software.

Roxen Internet Software
Box 449
SE-581 05 Linköping
Sweden
www.roxen.com

Your rights to the software are
governed by the accompanying
software license agreement.

Every effort has been made to ensure
that the information in this document
is accurate. Roxen Internet Software
is not responsible for printing or
clerical errors.

Other company and product names
mentioned herein are trademarks of
their respective companies. Roxen
Internet Software assumes no
responsibility with regard to the
performance or use of these products.

2014-03-11 Introduction 3

Contents

1 Introduction 5

1.1 XSLT Tutorial 5

2 Using HTML Contents 6

2.1 HTML to XML conversion example 6

3 An XML Document is a Tree 8

3.1 A sample document tree 8

4 Where to Place Stylesheets 9

4.1 Roxen CMS extensions for locating stylesheets 9

5 Setting up the DemoLabs Site 10

6 A First Look at a Stylesheet File 11

6.1 Importing code from separate files 11

6.2 Controlling output format 11

6.3 Global parameters 12

7 Applying Template Rules 13

7.1 Basic match pattern 13

7.2 Matching with predicates 13

8 Reusing Template Code 15

8.1 Calling named templates 15

8.2 Handling unbalanced output 15

9 Template Modes and Expressions 17

9.1 Attribute value templates 18

10 XPath Axes and Predicates 19

10.1 Abbreviated form 19

10.2 Predicates 20

11 Iteration and Conditional Processing 21

2014-03-11 Introduction 4

12 Variables and Parameters 23

12.1 Variable example 23

12.2 Passing parameters in template calls 23

13 Template Parameterization 25

13.1 Assigning type information 25

13.2 Parameter example 26

13.3 Other documentation options 27

14 Multiple Source Documents 28

15 Roxen Extensions 29

15.1 Variables 29

15.2 Functions 29

15.3 Elements 31

15.4 Final words 33

2014-03-11 Introduction 5

1 Introduction

Welcome to the Roxen CMS Tutorials. This section is dedicated to all users of Roxen
CMS. The tutorials are intended for both beginners and experienced users, and we
hope that all find some interesting reading and get creative ideas.

It is assumed that the reader is familiar with HTML and have some knowledge of
XML.

As always, if you have any suggestions, comments or complaints regarding these
tutorials do not hesitate to send an email to manuals@roxen.com and if the issue is
an obvious bug do not hesitate to report it to Bug Crunch, our bug tracking system.

1.1 XSLT Tutorial
Roxen CMS includes a template system based on the Extensible Stylesheet
Language Transformations (XSLT) standard version 1.0. It's beyond the scope of this
manual to document XSLT in its entirety but we will present a tutorial on how to start
using it. We will also describe some important Roxen CMS-specific issues on how
XSLT is implemented.

Related to XSLT is another standard named XPath. It defines the syntax for
expressions in XSLT stylesheets and is also used by Roxen CMS. The XSLT and XPath
standards can be found on the W3C web site at www.w3.org/TR/xslt and
www.w3.org/TR/xpath, respectively. It should be noted that while these documents
are the main references for technical details they are not particularly reader-friendly;
instead we recommend www.xslt.com to find news, tutorials, FAQs, book references,
mailing lists and other valuable resources.

2014-03-11 Using HTML Contents 6

2 Using HTML Contents

XML and HTML may look similar at first but there are syntactic differences that make
them incompatible. In normal use XSLT templates are restricted to XML input only,
meaning that HTML content isn't suitable until it's rewritten to adhere to XML
standards. However, in Roxen CMS this will happen automatically whenever a HTML
document is requested by a client browser. The conversion will perform these
changes:

• Convert all empty tags to properly terminated XML tags

• Terminate all containers which are optional in HTML

• Add surrounding quotes to all tag attribute values

• Convert tag names and attributes to lower-case

• Rewrite empty attributes

• Rewrite & as &

• Add a top-level container element if one is missing

2.1 HTML to XML conversion example
Take the following HTML page as an example. This is what the original code might
look like:

<HTML><BODY>
 <H1>Sales</H1>
 This month's sales data:

 <table>
 <tr>
 <td bgcolor=#c0c0c0>Product<td>Quantity
 <tr>
 <td nowrap>Nuts & bolts<td>2,500 pcs
 <tr>
 <td>Drills<td>185 pcs
 </table>
</BODY></HTML>

After automatic XML conversion Roxen CMS will get this page:

<html><body>
 <h1>Sales</h1>
 This month's sales data:

 <table>
 <tr>
 <td bgcolor="#c0c0c0">Product</td><td>Quantity</td>
 </tr><tr>
 <td nowrap="nowrap">Nuts & bolts</td><td>2,500 pcs</td>
 </tr><tr>
 <td>Drills</td><td>185 pcs</td>
 </tr>
 </table>
</body></html>

This page is now sufficiently XML compliant to be accepted by the XML parser and
can then be formatted using an XSLT stylesheet.

2014-03-11 Using HTML Contents 7

The converter will also try to repair some simple syntax errors such as erroneous tag
nesting. One common construct is:

<i>Hi there!</i>

which is converted into:

<i>Hi there!<!----></i>

thus making the containers properly nested.

2014-03-11 An XML Document is a Tree 8

3 An XML Document is a Tree

Throughout this introduction we will use a tree analogy for XML documents. This is
convenient since it lets us talk about parents, siblings, children and other relations.

3.1 A sample document tree
To exemplify this we can start with an XML file:

<?xml version="1.0"?>
<ancestor>
 <parent>
 <sibling-1/>
 <sibling-2/>
 <sibling-3>
 <!-- a comment -->
 <child/>
 Some text!
 </sibling-3>
 </parent>
</ancestor>

From this file we can draw a tree:

 /
 |
 <ancestor>
 |
 <parent>
 |
 +--------------+--------------+
 | | |
 <sibling-1> <sibling-2> <sibling-3>
 |
 +--------------+-----------+
 | | |
 <!-- a comment --> <child> Some text!

Each item pictured in this tree is called a node. There are element nodes, comment
nodes, text nodes and so on. At the very top is a root node called /. In addition to the
input data the output is also represented as a tree during the XSLT transformation.
This model is very helpful when trying to understand what goes on.

One node in particular, the current node, is of great importance. This is the data item
in the input file where the XSLT engine is currently looking for input. At the beginning
the current node is set to the document root but it will change over time as
processing takes place.

By starting at the root and tracing the lines downward we can refer to any of the
elements in the tree. E.g. /ancestor/parent/sibling-3/child is a path from the
root to the <child> element. We will later on see how we can find nodes by starting
at any node, tracing the lines e.g. left or right and counting the number of nodes we
pass by.

2014-03-11 Where to Place Stylesheets 9

4 Where to Place Stylesheets

Roxen CMS gives you a lot of power in the way it locates XSLT stylesheets in your site
hierarchy. It will search for stylesheets in the directory where the requested content
file is stored and, if not found, it will move on to the parent directory, the parent's
parent directory and so on. This search strategy has a major benefit in that site-wide
stylesheets can be placed at the root of the site and then be overridden, either in
part or completely, as needed in selected sub-trees.

4.1 Roxen CMS extensions for locating stylesheets
This implementation supports absolute or relative import paths in the <xsl:import>
statement. The latter type can be prefixed with ancestor:: or ancestor-or-
self:: (concepts borrowed from XPath) to search relative to the stylesheet directory.
By using ancestor:: one can have a stylesheet named, for instance, footer.xsl
which imports another stylesheet using the same name located higher up in the site
hierarchy.

The import statement has been extended to handle parametric import, in other words
expressions which let the import file be determined at run-time. See the section
Template Parameterization for more examples on this.

<!-- absolute path -->
<xsl:import href="/articles/footer.xsl"/>

<!-- use smart search starting in content file directory -->
<xsl:import href="footer.xsl"/>

<!-- use smart search starting in same directory as this stylesheet -->
<xsl:import href="ancestor-or-self::footer.xsl"/>

<!-- use smart search starting in parent directory of this stylesheet -->
<xsl:import href="ancestor::footer.xsl"/>

<!-- use parametric import -->
<xsl:import href="{concat($footer, '.xsl')}"/>
<xsl:param name="footer" rxml:type="select:footer1,footer2"
select="'footer1'"/>

Since stylesheets may contain valuable information that should not be visible in plain
text to visitors of the site it can be useful to prevent direct downloading of an XSLT
file. This is easily achieved by setting the Externally Visible metadata for the
stylesheet file to Never. The stylesheet will still work as expected but can no longer
be accessed from a browser.

2014-03-11 Setting up the DemoLabs Site 10

5 Setting up the DemoLabs Site

Creating a new Platform virtual server in the Roxen CMS configuration interface will
let you initialize your site repository with a copy of a demo site for a fictitious
company called DemoLabs. This site will serve as an example for this introduction on
XSLT so we recommend that you set up a DemoLabs site before continuing.

To accomplish this, go to the Roxen WebServer administration interface, select the
Sites tab and click Create new site; a wizard will guide you through this process step
by step. One of the wizard pages asks you to select the preinstalled content for your
site, and this is where you should select DemoLabs. Once you answer the remaining
questions your site will be created and ready for you to use.

Note that the code snippets included in this tutorial are not always complete files.
Many times only a part of the file is shown, and there may be sections marked ...
where text not relevant to the discussion at hand has been removed for brevity.

2014-03-11 A First Look at a Stylesheet File 11

6 A First Look at a Stylesheet File

Let's take a look at the DemoLabs stylesheet called common.xsl (stored in the root of
the DemoLabs site):

<?xml version='1.0'?>
<xsl:stylesheet version="1.0" rxml:copy-unknown-elements="yes">

<xsl:import href="xhtmllayout.xsl"/>
<xsl:import href="buttons.xsl" rxml:customize-params="no"/>
<xsl:import href="containers.xsl" rxml:customize-params="no"/>
<xsl:import href="{$palette-file}" rxml:customize-params="no"/>

<xsl:output method="html" />

<xsl:param name="palette-file"
 rxml:type="file:/color-palette*.xsl"
 select="'color-palette1.xsl'"
 rxml:group="Colors"/>
<xsl:param name="company-logo"
 rxml:type="string"
 select="'DemoLabs'"
 rxml:group="Strings"/>
<xsl:param name="company-full"
 rxml:type="string"
 select="'DemoLabs, Inc.'"
 rxml:group="Strings"/>
 ...
</xsl:stylesheet>

The first line declares that this is an XML file. Although not required it is a good idea
to indicate which XML version one is using. Following that is the <xsl:stylesheet>
tag which encapsulates the entire stylesheet. Again a version attribute which in fact
is required by the XSLT standard (but not enforced by Roxen CMS), and thereafter a
Roxen CMS attribute called rxml:copy-unknown-elements which we will explain
later on.

6.1 Importing code from separate files
All stylesheet data need not be contained in one single file since the XSLT standard
supports importing of one or more stylesheets into another. The <xsl:import> tags
in this file imports other XSL stylesheets, thereby making all of the rules and
variables declared in those stylesheets available as well. The given names may be
absolute pathnames when a specific file is wanted, but here we see simple filenames
which enable the smart search strategy described recently. The exception is the last
import directive which takes advantage of a parametric import.

6.2 Controlling output format
The <xsl:output> tag controls various aspects of the output generation. The XSLT
engine can operate in one of three modes; XML, HTML or text, and although the
default mode is derived from a set of heuristics we here tell the engine that we
always want it to return HTML data.

2014-03-11 A First Look at a Stylesheet File 12

6.3 Global parameters
Finally there are a number of <xsl:param> tags declaring global parameters.
Parameters give the stylesheet author an easy way to control various aspects of how
stylesheets work. In this case the <xsl:param> tags use Roxen CMS-specific
attributes called rxml:type and rxml:group to include type information and
parameter grouping titles, respectively, both of which are used by the Customize
Template feature in the Content Editor. More on that later in this introduction.

2014-03-11 Applying Template Rules 13

7 Applying Template Rules

A stylesheet file normally contains a number of template rules where each rule
describes how a particular tag in the content file should be processed. The code
inside a template rule is executed like a computer program and the resulting data is
sent to the web page.

7.1 Basic match pattern
So far we have not seen any DemoLabs template rules. The inner workings of the
stylesheet is stored in, for instance, xhtmllayout.xsl and its import files, and
here's one of the least complex template rules from containers.xsl:

<xsl:template match="h2">
 <p/>
 <i><xsl:apply-templates/></i>

</xsl:template>

The match attribute tells the XSLT engine which input tags this template rule should
be applied to. For this rule any <h2> tag is acceptable.

The rule's body will be parsed and tags not belonging to the XSLT namespace (i.e.
prefixed by xsl:) will be copied to the output. In this case all but one tag is copied;
meanwhile, the <xsl:apply-templates/> tag tells the engine to process the
contents of the <h2> input element recursively.

7.2 Matching with predicates
Another rule from the same stylesheet file:

<xsl:template match="p[@initial]">
 <xsl:apply-templates/>
 <br clear="all"/>
</xsl:template>

The major change here is the more advanced match attribute. The p[@initial]
string is a short-hand way of writing p[attribute::initial]. Square brackets
surround a predicate which places additional restrictions on when the template rule
is invoked. This particular rule only applies to <p initial="initial"> tags,
leaving regular <p> tags unprocessed.

As illustrated by these examples <xsl:apply-templates/> is the magic tag which
drives the template application. In its simplest form it will process all children of the
current input element but by supplying a select attribute it can be directed to read
any other input data.

If the XSLT engine finds input data for which no template rule exists one of two things
will happen:

• All traditional XSLT stylesheets contain a built-in rule which is applied to
unknown tags. This rule consists of a call to <xsl:apply-templates/>.
Another built-in rule is used for text elements which are copied to the output.

2014-03-11 Applying Template Rules 14

• Stylesheets declared with rxml:copy-unknown-elements="yes" (as seen
earlier in one of the examples) will behave slightly differently. The built-in rule
has been modified to not only call <xsl:apply-templates/> recursively but
also copy the name of the current tag and its attributes to the output. It will
also copy comments and processing instructions in both the content file and
the stylesheet file.

This special mode is not compliant with the XSLT standard but is useful when
lots of HTML code is included in the input files and you want it preserved in
the output without adding template rules for each and every HTML tag.

2014-03-11 Reusing Template Code 15

8 Reusing Template Code

All non-XSLT tags which are placed in the stylesheet file are treated as literal result
elements. As already mentioned they will be copied to the output whenever the rule
they are located in is processed. One might think that this can be used to call one of
the template rules directly, which unfortunately is wrong. In other words this code
fragment will not work:

<xsl:template match="greeting">
 <p>Hi there!</p>
</xsl:template>

<xsl:template match="message">
 <!-- this doesn't work -->
 <greeting/>
</xsl:template>

8.1 Calling named templates
How can this be accomplished then? <xsl:call-template/> is the answer, but
before we can use it we must assign unique names to those template rules we wish
to call:

<xsl:template match="greeting" name="show-greeting">
 <p>Hi there!</p>
</xsl:template>

<xsl:template match="message">
 <!-- this works -->
 <xsl:call-template name="show-greeting"/>
</xsl:template>

You can find more examples on this in xhtmllayout.xsl.

8.2 Handling unbalanced output
At times it may be necessary to split code into separate template rules which can be
called individually. Often this leads to an XML syntax problem since all tags must be
well-balanced. Once more we'll start by looking at a non-functional code fragment:

<xsl:template name="start-table">
 <!-- won't work -->
 <table>
</xsl:template>

<xsl:template name="end-table">
 <!-- neither will this -->
 </table>
</xsl:template>

<xsl:template match="my-table">
 <xsl:call-template name="start-table"/>
 <tr><td>...</td></tr>
 <xsl:call-template name="end-table"/>
</xsl:template>

2014-03-11 Reusing Template Code 16

Understandably this will never be accepted by the XML parser. What must be done in
such cases is to use a special XML wrapper called <![CDATA[...]]> which makes
the XML parser accept the input as pure text instead of markup, and finally add
<xsl:text> to tell the XSLT engine to output this text unmodified:

<xsl:template name="start-table">
 <xsl:text disable-output-escaping="yes"><![CDATA[<table>]]></xsl:text>
</xsl:template>

<xsl:template name="end-table">
 <xsl:text disable-output-escaping="yes"><![CDATA[</table>]]></xsl:text>
</xsl:template>

2014-03-11 Template Modes and Expressions 17

9 Template Modes and Expressions

XSLT defines a concept called mode. This is a way to control which template rules
that gets applied when <xsl:apply-templates/> is executed.

For instance, consider these template rules for <h1>:

<xsl:template match="h1" mode="toc">
 ...
</xsl:template>

<xsl:template match="h1">
 ...
</xsl:template>

Here toc is an abbreviation for table of contents. By defining two rules for the same
tag and separating them by a mode attribute we can decide that <h1> tags should be
processed in a different manner when we are builting the table of contents:

<xsl:template match="document">
 <h1>Table of contents</h1>
 <xsl:apply-templates select="h1" mode="toc"/>

 <hr/>
 <xsl:apply-templates/>
</xsl:template>

The first <xsl:apply-templates> will select all <h1> elements and process them
using the rule designated for table of contents. In contrast, the second <xsl:apply-
templates/> will select any child element of the current node (i.e. all elements
inside the <document> container) and process them recursively in normal mode.

One important detail here is that we are reusing the same <h1> tags in the input file
for different purposes. No matter which one of the rules we invoke they will get the
same <h1> tags in sequence as their input data. The containers.xsl and page-
components.xsl files relies on this fact to pull off another trick, namely creating
relative references from the table of contents to the headings in the document. Let's
return to the <h1> example again, this time expanding it to introduce cross-reference
links:

<xsl:template match="h1" mode="toc">
 ...

 <xsl:value-of select="."/>

 ...
</xsl:template>

<xsl:template match="h1">

 ...
</xsl:template>

The expression generate-id(.) is an XPath expression which generates a unique
identifier string for the node ., i.e. the current node. It is guaranteed to generate the
same identifier for the same node within one activation of the XSLT engine. Knowing
this we can build a relative URL in the table of contents by inserting <a

2014-03-11 Template Modes and Expressions 18

href="#id_4711">... and have the section we link to start with a
corresponding anchor.

9.1 Attribute value templates
The curly brackets are needed to tell the XSLT engine that parts of the literal result
element attributes should be treated as an expression. They are not needed when
passing expressions in normal XSLT tags.

This example also introduces the tag <xsl:value-of select="."/>. Its purpose is
to extract the text value of the current node. The reason why <xsl:apply-
templates/> is not used is that we are not interested in any nested tags in the <h1>
container; we want <h1>Foo <i>Bar</i></h1> to return Foo Bar excluding any
formatting details.

2014-03-11 XPath Axes and Predicates 19

10 XPath Axes and Predicates

We have touched on the subject of expressions earlier but we will now take a closer
look. One of the previous examples used the syntax p[attribute::initial]; as
mentioned then square brackets denote a predicate which in this case is an
existence test for an attribute named initial. This predicate is tested against the
candidate node in the input file, and if the result is the boolean value true the rule is
processed.

Of special interest here is the attribute:: axis. An axis defines a direction in which
we can look for data related to the current node. These are the axes available in
XPath:

• parent::

• ancestor::

• ancestor-or-self::

• child::

• descendant::

• descendant-or-self::

• preceding::

• preceding-sibling::

• following::

• following-sibling::

• attribute::

• namespace::

• self::

Recall for a minute the tree picture presented in the section An XML Document is a
Tree. With the current node (which can be any node) as a starting point the axes
provide a means of describing how to reach any other node in the tree.

10.1 Abbreviated form
Some axes are frequently used and may be abbreviated into shorter forms. The
following table lists a number of popular constructs, and when the expanded form
refers to node() it means any tag, text, comment etc:

Abbreviated form Expanded form
@foo attribute::foo

foo/bar child::foo/child::bar

foo//bar child::foo/descendant-or-
self::node()/child::bar

.. parent::node()

. self::node()

2014-03-11 XPath Axes and Predicates 20

10.2 Predicates
Nodes on an axis can be located in different ways. Usually one uses a name or other
type of node identifier, possibly combining this with a relative position counter. E.g.,
preceding-sibling::tr[1] retrieves the closest preceding <tr> element at the
same nesting level as the current node. This works due to the fact that [1] is treated
as the expression [position() = 1], i.e. a position predicate.

Predicates can be nested and/or sequenced like tr[td[1][@align='center']]
which finds a <tr> element whose first <td> child element has an align='center'
attribute.

2014-03-11 Iteration and Conditional Processing 21

11 Iteration and Conditional
Processing

In earlier examples we have seen the use of <xsl:apply-templates> to process
data recursively. Instead of writing the template code as a stand-alone rule you can
process data directly using the loop construct. In this example we will use both
<xsl:for-each> and <xsl:if> to present a comma-separated list of name and
email addresses:

<!-- data file -->
<?xml version="1.0"?>
<customers>
 <customer>
 <name>Alice</name>
 <email>alice@somewhere.com</email>
 </customer>
 <customer>
 <name>Bob</name>
 <email>bob@elsewhere.com</email>
 </customer>
</customers>

<!-- template file -->
<?xml version="1.0"?>
<xsl:stylesheet>
 <xsl:template match="customers">
 <h3>Contact List</h3>
 <xsl:for-each select='customer'>
 <xsl:value-of select='name'/>
 <xsl:value-of select="email"/>
 <xsl:if test="position() != last()">, </xsl:if>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Sharp-eyed observers will again recognize the use of curly brackets in the href
attribute of the <a> element. In XSLT an attribute where expressions can be
embedded is called attribute value template. In this case the expression is a
selection statement which inserts the <email> data into the link.

The <xsl:if> statement ensures that the list item separator is not inserted after the
final item. To accomplish this we use a boolean expression which compares the
position of the current <customer> element to the position of the last <customer>
element. Both of these positions are computed with respect to the the set of nodes
selected in the <xsl:for-each> statement. Also noteworthy is the != operator
which stands for not equal and is borrowed from programming languages such as C
and C++.

For situations where a single <xsl:if> statement isn't powerful enough XSLT also
offers <xsl:choose> where any number of <xsl:when> test cases as well as an
<xsl:otherwise> fallback case can be handled. Interested readers can look in e.g.
navigation-components.xsl which contains numerous <xsl:choose>
statements.

2014-03-11 Iteration and Conditional Processing 22

The Roxen CMS implementation has also been extended to allow attribute value
templates in the <xsl:output> attributes. This enables, among other things,
browser-specific output modes:

<?xml version="1.0"?>
<xsl:stylesheet>
 <!-- check for WAP 1.1 browser -->
 <xsl:variable name="output-method">
 <xsl:choose>
 <xsl:when test="contains($rxml:supports, ' wml1.1 ')">xml</xsl:when>
 <xsl:otherwise>html</xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!-- set output mode dynamically -->
 <xsl:output method="{$output-method}"/>
</xsl:stylesheet>

The code examines the rxml:supports variable which is explained in the section
Roxen Extensions.

2014-03-11 Variables and Parameters 23

12 Variables and Parameters

By creating a variable you can store strings, numbers, booleans, node-sets and even
result tree fragments and recall them later on. A result tree fragment represents
nodes in a tree structure which later on will be used to generate the output.

Variables are only accessible from the point where they are declared and onward
within the parent element. The exception is variables declared at the top-most level,
i.e. outside template rules, in which case they become global. Another concept
related to variables are parameters which are needed to send values to template
rules.

12.1 Variable example
The file print.xsl in the DemoLabs site includes a template rule which we will use
to demonstrate variables:

<xsl:template match="p[@initial]/text()[1]">
 <xsl:variable name="char" select="substring(., 1, 1)"/>
 <xsl:variable name="rest" select="substring(., 2)"/>

 <xsl:value-of select="$char"/>

 <xsl:value-of select="$rest"/>
</xsl:template>

This rule has a rather advanced match pattern whose purpose is to find the first text
child of a <p initial="initial"/> element. The template rule declares two local
variables, char and rest, where we place non-overlapping substrings of the current
text node. The first substring holds the first character and the second holds the
remaining text. To access the values of char and rest we use the expressions $char
and $rest, respectively, which is the XPath syntax for variable references. The end
result is that the initial character in the <p/> container will be displayed boldfaced
and in larger size and the remaining string is displayed normally. A similar rule is
found in containers.xsl but that one takes advantage of <gtext/> to render a
drop caps graphically.

12.2 Passing parameters in template calls
Sending parameters requires a bit more attention. Both the caller and the template
rule which expects parameters as input must agree on parameter names:

<!-- from buttons.xsl -->
<xsl:template name="gnutton" match="gnutton">
 <xsl:param name="align" select="@align"/>
 <xsl:param name="valign" select="@valign"/>
 <xsl:param name="text" select="text()"/>
 ...
</xsl:template>

<!-- from page-components.xsl -->
<xsl:call-template name="gnutton">
 <xsl:with-param name="text" select="concat($string-print, '!')"/>
 <xsl:with-param name="align">left</xsl:with-param>

2014-03-11 Variables and Parameters 24

 <xsl:with-param name="valign">bottom</xsl:with-param>
</xsl:call-template>

As indicated from this example the order of parameters is not important but the
names are. The select attributes of the <xsl:param> tags for the parameters align,
valign, and text set default values in case the caller doesn't specify an actual
value.

To pass values <xsl:with-param> elements are inserted into the <xsl:call-
template> container. They may also be used in companion with <xsl:apply-
templates> elements. Any parameter for which the invoked template rule fails to
declare a matching <xsl:param> are ignored.

2014-03-11 Template Parameterization 25

13 Template Parameterization

In the previous section we mentioned local and global variables. In fact there can be
global parameters as well. The XSLT specification lets the software implementation
decide on how this is realized; in Roxen CMS we use special markup syntax to make
this possible. We will now return to the code displayed in the section A First Look at a
Stylesheet File, this time highlighting the use of <xsl:param> at a global level:

<?xml version='1.0'?>
<xsl:stylesheet version="1.0" rxml:copy-unknown-elements="yes">
 ...
 <xsl:import href="{$palette-file}" rxml:customize-params="no"/>
 ...

 <xsl:param name="palette-file" select="'/color-palette1.xsl'"
 rxml:type="file:/color-palette*.xsl" rxml:group="Colors"/>

 <xsl:param name="company-logo" select="'DemoLabs'"
 rxml:type="string" rxml:group="Strings"/>

 <xsl:param name="company-full" select="'DemoLabs, Inc.'"
 rxml:type="string" rxml:group="Strings"/>

 <xsl:param name="domain-name" select="'demolabs.com'"
 rxml:type="string" rxml:group="Strings"/>

 <xsl:param name="logo-font" select="'quadrangle'"
 rxml:type="font" rxml:group="Font settings"/>

 <xsl:param name="logo-font-size" select="36"
 rxml:type="int" rxml:group="Font settings"/>

 <xsl:param name="h1-font" select="'yikes!'"
 rxml:type="font" rxml:group="Font settings"/>

 <xsl:param name="h1-font-size" select="36"
 rxml:type="int" rxml:group="Font settings" />

 <xsl:param name="initial-font" select="'quadrangle'"
 rxml:type="font" rxml:group="Font settings"/>

 <xsl:param name="initial-font-size" select="32"
 rxml:type="int" rxml:group="Font settings" />

 <xsl:param name="h2-fonts" select="'arial, helvetica, sans-serif'"
 rxml:type="string" rxml:group="Font settings"/>

</xsl:stylesheet>

13.1 Assigning type information
Any global parameters declared with an Roxen CMS-specific rxml:type attribute will
be noticed by the Content Editor and included in the user-friendly Customize
Template wizard. The select attributes are once again setting default values but
values entered in the wizard will override the defaults. The possible types for
rxml:type are:

• string, text: Two variants of textual parameters which will be instantiated
as values of the XPath string type.

• int, float: Numeric parameter types which will be instantiated as values of
the XPath number type.

2014-03-11 Template Parameterization 26

• Checkbox: Boolean toggle. Set the initial value to 1, on, true or enable to
give the XPath boolean variable a value of true. Any other value will yield
false.

• color: Color selection parameter which will be instantiated as a value of the
XPath string type.

• font: Font selection parameter which will be instantiated as a value of the
XPath string type. The list of available fonts depends on what is installed in
the Roxen server.

• select:item,item,...: String selection popup parameter which will be
instantiated as a value of the XPath string type. Choices should be listed in a
comma-separated string (literal comma can be included if escaped as \,).

• file:path,path,...: Similar to select but will index files at the given
locations and present them in a popup menu. The absolute path of the
chosen file will be instantiated as a value of the XPath string type. A path may
be relative to the current stylesheet or absolute. The last segment of an
absolute path, i.e. after the last / character, may contain wildcards such as
*and ?. Note that this is not supported for relative paths.

13.2 Parameter example
Here are some parameter type examples:

<!-- string -->
<xsl:param name="company-logo" rxml:type="string" select="'DemoLabs'"/>

<!-- int -->
<xsl:param name="logo-font-size" rxml:type="int" select="36"/>

<!-- checkbox -->
<xsl:param name="news-headlines" rxml:type="checkbox" select="1"/>

<!-- color -->
<xsl:param name="bgcolor-primary" rxml:type="color" select="'#ffffc9'"/>

<!-- font -->
<xsl:param name="h1-font" rxml:type="font" select="'yikes!'"/>

<!-- select -->
<xsl:param name="product" rxml:type="select:Roxen WebServer,Roxen CMS"
 select="'Roxen CMS'"/>

<!-- file -->
<xsl:param name="palette-file" rxml:type="file:/color-palette*.xsl"
 select="'/color-palette1.xsl'"/>

The file type and the Roxen-enhanced <xsl:import> is a powerful combination. As
seen in this example we use it to determine which color palette we should inherit at
run-time. Since all import directives must come before anything else inside a
<xsl:stylesheet> element the XSLT engine has been relaxed to allow forward-
referencing of a parameter name.

The double quoting seen in string values in XSLT expressions is important. If not
present the string is treated as an expression resulting in a syntax error or
unexpected behavior. Example:

2014-03-11 Template Parameterization 27

<!-- incorrect use of select -->
<xsl:param name="company-logo" rxml:type="string" select="DemoLabs"/>

The incorrect code in this example tells the XSLT engine to initialize the company-
logo parameter to the value found in the <DemoLabs> element, which is not at all
what we wanted.

13.3 Other documentation options
Two other attributes provided by Roxen CMS are rxml:group and rxml:doc. As
seen above the rxml:group is used to place a number of related parameters into
the same logical group; this grouping is visible in the Customize Templates wizard in
the Content Editor. Likewise, rxml:doc documents the parameter and displays its
value in the customization wizard.

2014-03-11 Multiple Source Documents 28

14 Multiple Source Documents

One of the less obvious but extremely powerful features of XSLT is the ability to read
input from several documents at once. This is done through the document()
function which returns a node-set of all nodes in the given file.

The document contents can be used directly in expressions, or it may be stored in a
variable for later processing. Consider an input file called my-authors.xml which
contains the following data:

<?xml version="1.0"?>
<authors>
 <author name="Astrid Lindgren" country="Sweden"/>
 <author name="H.C. Andersen" country="Denmark"/>
 <author name="Selma Lagerlöf" country="Sweden"/>
</authors>

Next, this stylesheet wants to display all authors in two groups, Swedish and
international:

<?xml version="1.0"?>
<xsl:stylesheet>

 <xsl:template match="/">
 <!-- read author data -->
 <xsl:variable name="data" select="document('my-authors.xml')"/>

 <h3>Swedish authors</h3>
 <xsl:for-each select="$data/authors/author[@country = 'Sweden']">
 <xsl:value-of select="@name"/>

 </xsl:for-each>

 <h3>International authors</h3>
 <xsl:for-each select="$data/authors/author[@country != 'Sweden']">
 <xsl:value-of select="@name"/>

 </xsl:for-each>
 </xsl:template>

</xsl:stylesheet>

The document() function would not be needed if the file my-authors.xml was the
one being accessed by the client browser and if that content file was set to use the
stylesheet above as its template. However, for the purpose of this example we can
imagine this stylesheet processed on behalf of another content file and as part of
this task loads the author file.

In Roxen CMS all relative file paths will be interpreted as starting at the current
content file. It does not currently support a second argument to document()
specifying another base for relative paths as described in the XSLT specification.

2014-03-11 Roxen Extensions 29

15 Roxen Extensions

To conclude this XSLT introduction we will look at the Roxen Platform-specific
extensions to XSLT and XPath variables, functions and elements.

15.1 Variables
When the XSLT engine processes a stylesheet in Roxen CMS you will always have
access to a set of predefined global variables, all of string type:

$rxml:supports

A string containing a space-separated string (including leading/trailing spaces) of
all support flags relevant to the current client browser. A hypothetical example
would be " java javascript tables images stylesheets ". This can be used to
optimize the stylesheet for a particular device or browser:

<xsl:template match="h1">
 <xsl:choose>

 <xsl:when test="contains($rxml:supports, ' images ')">
 <!-- render <h1> using Gtext graphics -->
 <gh1><xsl:apply-templates/></gh1>
 </xsl:when>

 <xsl:otherwise>
 <!-- output <h1> unmodified -->
 <h1><xsl:apply-templates/></h1>
 </xsl:otherwise>

 </xsl:choose>
</xsl:template>

Note the spaces which are necessary to differentiate e.g. " java " and "
javascript " since "java" alone is a proper substring of "javascript".

A list of supports flags in Roxen CMS can be found in the section <if supports>.

$rxml:host
$rxml:domain
$rxml:user
$rxml:name

String values taken from entites in the Client Scope.

$rxml:is-editarea

Boolean flag that is true when the page is rendered in the edit area for a user, i.e.
when a user is viewing his/hers uncommitted changes. This is the same as the
&user.is-editarea; variable in the User Scope.

15.2 Functions
Here are the Roxen CMS extension functions:

rxml:cookie(name)

Returns the value of the given cookie.

2014-03-11 Roxen Extensions 30

rxml:variable(name)

Returns the value of the given variable in the form scope.

rxml:pike-expression(program)

The argument should be a Pike program encoded as string. To overcome string
quoting problems it's usually a wise choice to put the code into a variable first:

<xsl:template match="/">
 <!-- define Pike program -->
 <xsl:variable name="my-program">
 mapping m = (["vendor" : "Roxen",
 "product" : "CMS"]);
 return m->vendor + " " + m->product + " on host " + id->misc->host;
 </xsl:variable>

 <!-- execute it -->
 <p>You are running
 <xsl:value-of select="rxml:pike-expression($my-program)"/>.
 </p>
</xsl:template>

When adding rxml:pike-expression to a stylesheet it will mark all transformed
pages as non-cacheable since the Pike code may have side-effects when run.

By default the rxml:pike-expression() function is disabled since it can be
used to access privileged information about the server (specifically, the
RequestID object named id). The server administrator can activate it by
changing a configuration setting for the XSLTransform module.

rxml:node-set(result-tree-fragment)

Converts a result tree fragment into a node-set containing the same data. The
operations allowed on a result tree fragment is very limited as described in the
XSLT specification, but when converted into a node-set you can use e.g. /, //, []
and similar operators.

<xsl:template match="/">
 <!-- create a result tree fragment -->
 <xsl:variable name="fruit-fragment">
 <fruits>
 <fruit name="apple"/>
 <fruit name="banana"/>
 </fruits>
 </xsl:variable>

 <!-- convert fragment into node-set and find "banana" -->
 <xsl:value-of
 select="rxml:node-set($fruit-fragment)/fruits/fruit[2]/@name"/>
</xsl:template>

rxml:metadata()
rxml:metadata(path)

Retrieves metadata information about the current content file (when no argument
is given) or a specific file/directory. The set of metadata as well as their names
are taken from entities listed in <emit dir> section.

The node-set returned for the current file will be a number of elements grouped
directly under a root node:

<!-- output from "rxml:metadata()" -->
<filename>index.xml</filename>

2014-03-11 Roxen Extensions 31

<type>text/xml</type>
<template>common.xsl</template>
<author-name>doris</author-name>
...

When a path is given the returned node-set consists of a number of <file> and
<dir> elements grouped directly under a root node. The <file> elements are
identical to what was described above, while the <dir> elements include only
<dirname>, <url> and <selected> elements:

<!-- output from "rxml:metadata('/news/')" -->
<file>
 <filename>index.xml</filename>
 <type>text/xml</type>
 <template>common.xsl</template>
 <author-name>doris</author-name>
 ...
</file>
<file>
 <filename>common.xsl</filename>
 <type>sitebuilder/xsl-template</type>
 <author-name>doris</author-name>
 ...
</file>
<dir>
 <dirname>news</dirname>
 <url>/news/</url>
 <selected>no</selected>
</dir>
...

The <selected> element contains yes or no depending on whether the directory
is part of the path to the current content page.The order of the file and directory
items is undefined so the <xsl:sort> is recommended for sorting the data:

<!-- generate sorted directory listing -->

 <xsl:for-each select="rxml:metadata('/')/*">
 <xsl:sort select="filename | dirname"/>
 <xsl:value-of select="filename | dirname"/>
 </xsl:for-each>

15.3 Elements
There are three Roxen CMS-specific extension elements:

<rxml:parse>

Runs the RXML parser on the element and copies the resulting data to the output:

<xsl:variable name="crypted-password">
 <rxml:parse>
 <crypt>hello world</crypt>
 </rxml:parse>
</xsl:variable>

Note that the output data is not fed into the XSLT parser so you cannot create
dynamic XSLT stylesheets this way. Since RXML tags may have side-effects all
caching of transformed web pages is disabled.

2014-03-11 Roxen Extensions 32

<rxml:copy-attributes>
<rxml:copy-attributes ignore="attr1,attr2,...">

Copies all attributes of the context node to the output. Can only be used before
other children are added to the the output element (just as <xsl:attribute>).
The optional ignore attribute should be a comma-separated list of attributes to
ignore.

<xsl:template name="img">

 <!-- copy all attributes except JavaScript event handlers -->
 <rxml:copy-attributes ignore="onclick,onmousedown,onmouseup,
 onmouseover,onmousemove,onmouseout,
 onkeypress,onkeydown,onkeyup"/>

</xsl:template>

This can be rewritten in standard XSLT using <xsl:copy-of> which is the
recommended solution for maximum compatibility:

<xsl:template name="img">

 <!-- copy all attributes except JavaScript event handlers -->
 <xsl:copy-of select="@*[name(.) != 'onclick' and
 name(.) != 'onmousedown' and
 name(.) != 'onmouseup' and
 ...]"/>

 <!-- even better solutions may exist in specific cases -->
 <xsl:copy-of select="@*[not(starts-with(name(.), 'on'))]"/>

</xsl:template>

<rxml:helptext>
<rxml:helptext match="element">,
<rxml:helptext match="element/@attr">

Provides stylesheets documentation which is presented in the Roxen CMS user
interface. Use of HTML markup is permitted as shown in this example:

<?xml version="1.0"?>
<xsl:stylesheet>
 <rxml:helptext>
 This stylesheet generates recurring page elements such
 as headers and footers.
 </rxml:helptext>

 <!-- document <footer> tag and its attributes -->
 <rxml:helptext match="footer">
 Template rule which outputs the page footer.
 </rxml:helptext>

 <rxml:helptext match="footer/@align">
 Sets footer alignment to <tt>left</tt>, <tt>center</tt>,
 or <tt>right</tt>. Default value is <tt>left</tt>.
 </rxml:helptext>

 <!-- template rules -->
 <xsl:template match="footer">
 <hr/>
 <div align="left">
 <xsl:if test="@align">
 <xsl:attribute name="align" select="@align"/>
 </xsl:if>
 <p>Last page update: <date/>.</p>
 </div>

2014-03-11 Roxen Extensions 33

 </xsl:template>
</xsl:stylesheet>

15.4 Final words
We hope that this introduction has helped you in becoming familiar with XSLT in
Roxen CMS. More tutorial and reference resources are available at www.xslt.com
which is well worth a visit.

