I

Roxen WebServer 5.4

I Roxen Internet Software AB
© 2011 Roxen Internet Software AB.
All rights reserved.

Under the copyright laws, this
document may not be copied, in
whole or in part, without the written
consent of Roxen Internet Software.

Roxen Internet Software
Box 449

SE-581 05 Linképing
Sweden

WWW.roxen.com

Your rights to the software are
governed by the accompanying
software license agreement.

Every effort has been made to ensure
that the information in this document
is accurate. Roxen Internet Software
is not responsible for printing or
clerical errors.

Other company and product names
mentioned herein are trademarks of
their respective companies. Roxen
Internet Software assumes no
responsibility with regard to the
performance or use of these products.

Contents

2.1
2.2
2.3
24
2.5
2.6

3.1

3.2
3.2.1

4.1
4.2

4.3

43.1
4.3.2
4.3.3

5.1

51.1
5.1.2
5.1.3
5.1.4

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

5.3
54

Introduction

Tutorial Contents

Introduction to MySQL

Querying

Data Extraction

Data Insertion

Using RXML Features with SQL Databases

Database Maintenance

Introduction to MySQL
Privileges

Building a Sample Database
The Sample Database Structure

Querying
The query() function
The big_query() function

Quoting

Pike

RXML

Parametric Queries

Data Extraction
SQL Syntax

Column Names
Aliases for Columns
Aliases for Tables
No Tables Involved

Conditions

Numeric Constants

Column Names

String Constants and Quoting
Other Data Types

The LIKE Operator

NULL Column Values

Sorting
Limiting

0 N N N 0o o O

©o O

11
12

13
13
13

17
17
18
18

19

19
20
20
20
21

21
21
21
21
22
22
22

22
22

5.5

5.5.1
5.5.2
5.5.3
554
555
5.5.6
5.5.7

5.6

6.1
6.1.1
6.1.2

7.1
7.2
7.3

8.1

8.2
8.2.1
8.2.2

8.3

83.1
8.3.2
8.3.3

8.4

Functions

Arithmetic and math functions
Comparison and logic functions
String comparison and operations
Control flow operators
Date-related functions
Miscellaneous functions

Special functions

Features Missing from MySQL

Data Insertion

Insertion Syntax
Insertion Query with Pike
Insertion Query with RXML

Using RXML Features with SQL Databases
The <tablify> Container
The Business Graphics Module

The <emit> and <sqlquery> Tags

Database Maintenance
Database Creation

Creating Tables
SQL Data Types
MySQL Data Types

Indices

MySQL Syntax

Postgres Syntax
Single-Column Primary Keys

Dropping

24
24
24
24
25
25
26
26

26

28

28
28
29

30
30
31
31

33
33

33
34
35

36
36
37
37

37

Introduction

Welcome to the Roxen CMS Tutorials. This section is dedicated to all users of Roxen
CMS. The tutorials are intended for both beginners and experienced users, and we
hope that all find some interesting reading and get creative ideas.

It is assumed that the reader is familiar with HTML and have some knowledge of
XML.

As always, if you have any suggestions, comments or complaints regarding these
tutorials do not hesitate to send an email to manuals@roxen.com and if the issue is
an obvious bug do not hesitate to report it to Bug Crunch, our bug tracking system.

Tutorial Contents

2.1

2.2

This section of the manual deals with how Roxen CMS and Pike can connect to SQL
databases, retrieve data and modify the data stored there. It doesn't aim at teaching
SQL or how to design a database, save for very simple cases, which are not
surprisingly the most common in normal Web-related programming tasks. So you
won't find references to triggers, stored procedures, referential integrity or complex
privileges management here: they can be used from Roxen CMS or Pike, but they're
more of an SQL matter, which is out of the scope of this manual.

Roxen CMS and Pike offer an uniform layer to access all the supported databases.
However such a layer does not cover anything but issuing queries and retrieving data.
SQL is unfortunately another matter: it is an ANSI standard, but just about every SQL
server has its own dialect, which may be a subset or a superset of the standard.
You'll need to check your server of choice's documentation about its version of SQL.

This section of the manual tries to be a reference for both Roxen CMS and Pike
programmers. To do so, most examples will be available in two versions, a Pike
snippet of code, and RXML code.

Note!

The RXML <sqgloutput> and <sqltable> have been deprecated in favour of the
<emit source="sql"> container. In this manual the 'old' tags are used, but the new
tag is briefly introduced on the The emit and sqlquery Tags page.

Introduction to MySQL

MySQL by TcX AB is a simple SQL server, very popular among web-designers. It is a
relatively simple and lightweight server, which aims at being very fast, but is not fully
ANSI-SQL compliant, as it doesn't support features such as triggers or sophisticated
access control.

Since MySQL is so popular among web-developers, it was chosen as the reference
RDBMS for Roxen CMS. This chapter will introduce you to it, and to some of the
pitfalls most easily encountered when using it. The examples shown are however as
cross-platform as they could be: they should work with any SQL server which claims
at least a partial degree of ANSI-SQL compliance.

* Privileges

¢ Building a Sample Database

Querying

Querying a server is by far the most used DB-related functionality. Aimost everything
(in some cases, plain everything) you'll do when interacting with an SQL server goes
through specifying correctly-formed SQL queries, sending them to a server and then
interpreting the results the server sends back.

RXML 2 offers two different ways to query a server, Pike too. These are needed to fit
all situations; a query may yield results, or it might not, and the only way to tell the
difference is by looking at the SQL code being executed by the server.

It would seem that programs (or RXML pages) accessing SQL resources are difficult
and cryptic because the results queries can return are inherently dynamic in number

2.3

2.4

2.5

and structure. Fortunately, very few programs need to handle the full range of
possible outcomes from a query. In fact, most SQL queries are either non-interactive,
or are parametric. This means they have a fixed structure where a few values (or no
value if the query is non-interactive) change on each execution. This ensures that the
results (or lack thereof) can be predicted accurately; if not in number, at least in
structure.

It is best to see SQL statements not as a foreign plug-in into a program's execution
flow, but as an integral part of it. Whenever the data storage structure changes, the
program must be changed according to it (this is why database design is such an
important matter: a bad database design decision might end requiring an application
rewrite almost from scratch).

* The query() function
* The big_query() function

* Quoting

Data Extraction

In this chapter we'll introduce how to perform data-extraction queries. We'll introduce
the SQL syntax for data-extraction, and provide a few examples, both in RXML and in
Pike.

¢ SQL Syntax
* Conditions
* Sorting

¢ Limiting

¢ Functions

* Features Missing from MySQL

Data Insertion

In this chapter we'll introduce how to insert data into a database.

Notice that data insertion and modification are two different operations, using two
different SQL commands.

* Insertion Syntax

Using RXML Features with SQL Databases

In this chapter we'll examine how to exploit some RXML features when working with
SQL databases.

The examples here contained are geared towards SQL-driven data sources, but it is
not of course the only use for them.

* The tablify Container
* The Business Graphics Module

* The emit and sqglquery Tags

2.6

Database Maintenance

Up to this point we have assumed the databases to be already present for us. But
this of course isn't the case in some real-world situations.

Designing a database is a very complex task for nontrivial cases. It is also a very
delicate operation: when dealing with data-storage-related applications, usually the
application is built around the data, and not the other way around. So a bad data
storage design will snowball, leading to a bad application design, which is very
expensive to fix, going as far as a rewrite from scratch.

So for the umpteenth time we'll remark that if an application uses non-trivially
organized data, the best solution is to hire someone to design the database.

In this chapter we'll examine how to build and delete a database, how to set the
tables and indices up or remove them. We'll assume that the database structure is
so simple to be self-evident (which is often the case for web-related systems),
database design won't be taken into account.

Also, the examples will be in pike-only: these activities are meant to be used only
once at database-creation, and are really not suited for a web-based application.

* Database Creation
¢ Creating Tables
* Indices

* Dropping

Introduction to MySQL

3.1

Privileges

A fundamental point, and a very common pitfall, in day-to-day MySQL operations is
understanding how the MySQL privileges system works. This chapter is meant to
provide only an overview of the basic functionalities. You may safely skip this section
when you only use the internal database shipped with Roxen CMS, since this hassle
is already covered by the internal workings of Roxen CMS. To get more details on the
MySQL privileges system, please refer to the MySQL manual.

The first noteworthy aspect is that MySQL does not use the security features of the
host system. It has its own authentication schemes, different from the system's.

This section uses the GRANT and REVOKE commands, which have been
implemented in MySQL version 3.22.11. If you have an earlier version, you're
suggested to upgrade.

MySQL offers four levels of access control: global, database, table and column. We'll
only deal with the first two, as they are the most important. If you think your setup
would require finer-grained security, you'll probably also need to hire a
knowledgeable Database Administrator: data storage and retrieval is a very sensitive
matter, performance- and security-wise.

To manage privileges you'll have to use the GRANT and REVOKE SQL commands.
Their (simplified) syntaxes are:

GRANT <priv_ type> [, priv type ...] ON <*.*|database.*> TO
<user name> [IDENTIFIED BY '<password>']
[, <user name> [IDENTIFIED BY '<password>'] ,...]
[WITH GRANT OPTION]

REVOKE <priv_ type> ON <*.*|database.*> FROM <user name>
[, <user name>, ...]

Where priv_type is a type of privilege, chosen among

ALL [PRIVILEGES] FILE RELOAD
ALTER INDEX SELECT
CREATE INSERT SHUTDOWN
DELETE PROCESS UPDATE
DROP USAGE

"ALL" or "ALL PRIVILEGES" means (guess what?) everything. "USAGE" is the same as
"no privilege".

If you use the "*.*" syntax, the altered privileges will be at the global level. If you use
"database.*", you'll touch the database-level privileges.

The user name can have the form 'username®@host', and can have wild-cards (‘%' or
'_', see later) in both the host or username parts.

If you specify the "IDENTIFIED BY..." clause, you'll set a password for the named user.
Users without a password are legal in MySQL, but they are a very serious security
hazard.

WITH GRANT OPTION means that the user is given the privilege to grant the same
privileges he has to other users. It can be revoked with the syntax

REVOKE GRANT OPTION ON ... FROM *user name*

In the default MySQL setup there is an anonymous user ('%@localhost'), whose
existence can cause unexpected results while authenticating other users. It is
advised to remove the anonymous user. It can't be done with the GRANT syntax, but
you have to do it manually as detailed the examples below.

Also, in the default MySQL setup there's an empty database named 'test', open for
anonymous use. We'll use it throughout this tutorial, but it's advised to remove it
('DROP DATABASE test') after you're done, as it can be a source of denial-of-service
attacks.

Note!

In order to maximize the security of your site, it's always best to give each user the
minimal privileges allowing him to do his work.

Create a new user named 'kinkie', having basic data access to the 'test' database.

With Pike:

$ pike
Pike v0.6 release 116 running Hilfe v2.0 (Incremental Pike Frontend)
object 0=Sgl.sqgl ("mysql://root:<password>@localhost/mysqgl");
o->query ("grant select,insert,update,delete on test.* to kinkie identified
by

'<password>") ;
o->query ("flush privileges");

Or, from the MySQL monitor:

$ mysql -uroot -p<password> mysqgl
> grant select,insert,update,delete on test.* to kinkie identified by
'<password>"';

Create a new user named 'dbmanager' having full SQL access to all databases (but
deny him server-related maintainance tasks):

With Pike:

object 0=Sgl.sqgl ("mysql://root:<password>@localhost/mysqgl");
o->query ("grant select,insert,update,delete,create,drop,alter,index on
. to dbmanager identified by '<password>'");

Disable the 'nasty' user.

With Pike:

object 0=Sgl.sqgl ("mysql://root:<password>@localhost/mysqgl");
o->query ("revoke all on *.* from nasty"):;

Note!

This will NOT remove the user from the authentication database, only prevent him
from connecting.

To remove the user completely, you'll have to act directly on the "mysql" database;
with Pike:

3.2

object 0=Sgl.sqgl ("mysql://root:<password>@localhost/mysqgl");
o->query ("delete from user where user='nasty'"):;

Delete the anonymous users and the public-access entries to the test databases:

object 0=Sgl.sqgl ("mysql://root:<password>@localhost/mysqgl");
o->query ("delete from user where user='"');
o->query ("delete from db where db like 'test%');

You might have noticed there are no RXML examples in this chapter. These tasks can
be executed from RXML (provided that you connect with enough access rights), but
it's not advised to have RXML code perform such critical tasks: one reload too much
could make your database useless. Using the DBs tab in the server Administration
Interface could prove handy, though.

Building a Sample Database

In the previous chapters we introduced how to build and install your database server.
In this chapter we'll build the sample database that will be used throughout this
manual.

Make sure your MySQL daemon is running and that the MySQL program files are in
your PATH, then use this command line

$ mysqladmin -u root -p password create sample

The database server will create files making a database. A single database server
can handle many databases: each is a data repository, completely independent from
all the other databases hosted by the same server.

A database can be dumped using the "mysqldump" utility. It will create an SQL script
file, that when run will re-create the structure and contents of a database. The
sample database was dumped with this utility.

You'll now want to fill in the sample database. To do so, you must use the "mysql"
utility, with these command lines:

$ mysql -u root -p password sample <sample db.schema
$ mysgl -u root -p password sample <sample db.data

The "mysql" utility is a so-called "interactive monitor", an application whose purpose
is to execute arbitrary SQL statements interactively. It is a very powerful and useful
tool, and it's advised to get familiar with it.

The two lines are required because | chose to dump the database structure (the so-
called 'schema') and the data separately.

The sample database is a simplified excerpt of the CIA World Factbook. It only covers
a few nations, and for each nation only a small amount of data.

From this moment on, we will not use the administrative user to develop the
examples. Instead, we will create a user named 'user' with password 'password' and
use it. Make sure you remove that user once you are done with this tutorial.

To create the user, you will need to issue this query from inside the mysql interactive
monitor:

3.2.1

$ mysql -u root -p *password* sample

...which grants all privileges on sample.* to the user identified by 'password'.

The Sample Database Structure

The sample database consists of four tables. The first one, named 'ids' is used to tie
country names to their 2-letter unique codes, which are used everywhere else. The
one named 'areas' has the purpose to tie a few world areas to an unique integer
identifier.

Although in theory both those tables could be not necessary (they handle a very
simple association, the 2-letter country code could be very easily substituted with the
country name in every place it appears), they actually serve two purposes: they make
the other tables more compact and efficient (a 2-letter unique code is simpler to
handle and requires less space than a variable-length name), and they formalize and
restrict the domain of possible choices, allowing for a cleaner and more robust
design.

The 'countries' table contains a few descriptive fields for each country, possibly in
relation with other tables. The 'boundaries' table contains informations about the
countries boundaries. It could be considered relationed to the 'countries' table, but
it's more practical to see it as a separate entity.

Querying

4.1

4.2

The query() function

The query() method of the Sql.sqgl object is the "simple" query interface. It is meant to
be used for those queries that return little or no data.

It's signature could look frightening;:
array (mapping (string:string|float|int)) query (string sqgl)

but it isn't that bad, really.

The returned value is an array, one element for every row, of mappings whose indices
are the column names, and values the column contents.

So in order to access the "foo" column in the fourth returned row, you'll use
mixed datum = db[4]->foo0;

If there are no results, the method will return an empty array.

Find out the country code for Italy

string country code for italy() {
object db=Sgl.sql ("mysqgl://user:password@localhost/sample") ;
array result=db->query("select code from ids where name='Italy'"):;
if (sizeof (result)>0) { //if there is any result
return result[0]->code;

}

return 0; //no code found

The reason why this interface is only suited for simple queries is that it will fetch the
whole results set and store it locally. It's not that big a deal for small databases, but
make a small mistake in specifying the query on an HUGE database, and it will be
tens or hundreds of megabytes to fetch. Talk about bloat... If you're going to retrieve
potentially huge data-sets, you'll need the big_query interface instead. It's a bit more
complex to use, but it will allow you fetch results on demand.

The big_query() function

The big_query() function allows programmers more control than the simpler query()
function on how data is retrieved from the database server, as it allows fetching the
data rows on demand. This is especially useful when you wish to do client-side
computations on the fly on big datasets, that would require too much memory to be
completely fetched and then processed.

The function's signature is cbject (Sql.sql result) big query(string sqgl)

The returned object is a handle to the results dataset. It offers methods allowing you
to retrieve rows and get informations on the dataset itself.

int num_rows()

returns the total number of rows in the result object. Some drivers (i.e. Sybase)
might not provide this functionality, and thus the only way to know how many rows
there are is by explicitly querying the server (see example below).

int num_fields()

returns the number of columns for the result object. This function is usually
meant for development purposes only, you shouldn't need it on production
systems.

int eof()

returns true if all rows in the result object have been fetched.

array(mapping(string:mixed)) fetch_fields()

retrieves descriptions for the columns in the results set. The mappings in the
returned array (one for each column) have some default fields, but they change in
different drivers. See the example below to discover what fields your driver of
choice provides. This function is usually used for development purposes only. You
should rarely need it on production systems. Also, notice that the returned results
will correspond to the server's idea of the fields, which might be different from the
actual declaration.

void seek(int skip)

This method allows to skip fetching some rows (the skip argument must be a
nonnegative integer).

int]|array(string|int) fetch_row()

The most important function of all, this one allows you to fetch a row of data.
There is one element of the array for each column, and the columns are ordered
as returned by fetch_fields() and as specified in the SQL query. If O is returned
instead, it means that there are no more rows to retrieve. An integer O is returned
for (SQL) NULL values, while all types of stored data are returned as strings. It's
up to the user to do the adequate type casts where appropriate. Type information
can usually be retrieved with the fetch_fields() function.

Note!

There are some restrictions on how data are retrieved with some drivers. Please
check the drivers-specific section for more detailed information.

Print the name and background for all the countries in Europe.

object (Sgl.sql) db=Sgl.sql ("mysgl://user:password@localhost/sample") ;
object (Sgl.sql result) result=db->big query(
"select ids.name, countries.background "
"from ids,countries,areas "
"where areas.name='Europe' and countries.map refs=areas.id and "
"ids.code=countries.country") ;
array(string) row;
while (row=result->fetch row())
{
//row[0] is the country name, row[l] is the background info
write("-—="+row[0]+"\n") ;
write(row[1]+"\n");

Now let's try writing a simple pikescript handling a multi-page table without resorting
to the LIMIT SQL clause (see ../data_extract/limiting). The main purpose of this
example is showing the usage of num_rows and seek functions, so despite being a
complete example, it's a bit stretched (in real-world, this is one of the cases where

the Roxen CMS caching capabilities come handy). Also, it doesn't output formally
valid HTML, and it doesn't handle exceptions. We'll show the 'ids' table contents, with
ten entries per page and links to the other pages.

#define DBHOST "mysqgl://user:password@localhost/sample"
#define QUERY "select name, code from ids order by name"
#define ENTRIES PER PAGE 10

#define SEEK IS BROKEN

string parse (object id)
{
string toreturn;
object (Sgql.sqgl) db;
int number of entries, number of pages, page, j;
object (Sgl.sql result) result;
array(string) row;

page=(int) (id->variables->page) ;
toreturn="<table border=1>\n";

db=Sqgl.sqgl (DBHOST) ; //connect

result=db->big query (QUERY) ; //query

number of entries=result->num rows(); //get the number of
rows

#ifdef SEEK IS BROKEN
//it looks like mysqgl's implementation of seek() is broken, probably at
//the mysgl level in my version (3.22.29). I'll do a loop to emulate
seek
for (j=0;j<ENTRIES PER PAGE*page;j++)
result->fetch row();

#else
result->seek (ENTRIES_PER_PAGE*page) ; //skip unneeded
results
#endif
for (j=0; j<10; J++) { //at most 10 results
row=result->fetch row(); //fetch the row
if (!row) //no more data?
break; //exit

toreturn += "<tr><td>"+row[0]+"</td><td>"+row[1l]+"</td></tr>\n";

}
//now the links section

number of pages=number of entries/ENTRIES_PER_PAGE;
if (number of entries$%ENTRIES PER PAGE)

number of pages++; //there might be an incomplete page
toreturn+="<tr><td colspan=2>";
for (j=0;j<number of pages;j++)
{

toreturn += "not query+"?page="+j+"'>"+(j+1)+" ";
}
toreturn +="</td></tr>";
toreturn +="</table>";
return toreturn;

What happens if the num_rows function is not available? The same results can be
obtained via a simple SQL query, obtained modifying the actual query being
executed. It is of course less efficient because two queries are issued instead of one.
But it's better than nothing.

The query is obtained replacing the list of fields being fetched with the 'COUNT(*)'
SQL function. It has slightly different semantics for complex queries, but for all the
query types covered in this manual, it works. You might want to alias it for easier
manageability (see ../data_extract/syntax).

So the previous example would have been written as:

#define DBHOST "mysqgl://user:password@localhost/sample"
#define COUNT QUERY "select count (*) as num from ids"
#define QUERY "select name, code from ids order by name"
#define ENTRIES PER PAGE 10

#define SEEK IS BROKEN

string parse (object id)
{
string toreturn;
object (Sgql.sqgl) db;
int number of entries, number of pages, page, j;
object (Sgl.sql result) result;
array(string) row;

page=(int) (id->variables->page) ;
toreturn="<table border=1>\n";

db=Sqgl.sqgl (DBHOST) ; //connect
number of entries=(int) (db->query (COUNT_ QUERY) [0]->num); // (1)
result=db->big query (QUERY) ; //query

#ifdef SEEK IS BROKEN
//it looks like mysqgl's implementation of seek() is broken, probably at
//the mysgl level in my version (3.22.29). I'll do a loop to emulate
seek
for (j=0;j<ENTRIES_ PER PAGE*page;j++)
result->fetch row();

#else
result->seek (ENTRIES_ PER PAGE*page) ; //skip unneeded
results
#endif
for (j=0; j<10; Jj++) //at most 10 results
{
row=result->fetch row(); //fetch the row
if (!row) //no more data?
break; //exit

toreturn += "<tr><td>"+row[0]+"</td><td>"+row[1l]+"</td></tr>\n";

}
//now the links section

number of pages=number of entries/ENTRIES_ PER_PAGE;
if (number of entries$%ENTRIES PER PAGE)

number of pages++; //there might be an incomplete page
toreturn+="<tr><td colspan=2>";
for (j=0;j<number of pages;j++)

toreturn += "not query+"?page="+j+"'>"+(j+1)+" ";
toreturn +="</td></tr>";
toreturn +="</table>";
return toreturn;

(1): this line is a quick shortcut using the simpler query (see query) interface. It is
appropriate in this case, because the results are tiny. We didn't make any checks on
the results either, because their structure is very well-known.

The values returned by fetch_fields depend on the server you are connecting to, save
for a few ones which should be always there. This is one of the reasons why you
shouldn't need to use this function except during development. Let's see an example
of it in action:

With Pike:

> object db=Sqgl.sqgl ("mysqgl://user:password@localhost/sample") ;
Result: object
> object res=db->big query("select country, map refs, flag from
countries") ;
Result: object
> res->fetch fields();
Result: ({ /* 3 elements */
([/* 7 elements */
"decimals":0,
"flags": (< /* 2 elements */
"primary key",
"not_null"

"max length":2,
"length":2,
"type":"string",

4.3

4.3.1

"table":"countries",

"name" :"country"

1)
([/* 7 elements */
"decimals":0,
"flags": (< /* 1 elements */
"not_null"

"max length":1,
"length":4,
"type":"char",
"table":"countries",

"name" :"map refs"

1)
([/* 7 elements */
"decimals":0,
"flags": (< /* 2 elements */
"not_null",
"blob"

"max length":13127,
"length":65535,
"type":"blob",
"table":"countries",
"name":"flag"
1)
})

An array of mappings is returned, one mapping for each field. The "name" key is
always present, as is the "flags" key. The other fields change depending on the
server, and (as you might see) on the data type.

Quoting

As better explained in the Conditions page, constants (especially string constants)
must be quoted in SQL. How the quoting must actually be composed will be
explained later, now we'll introduce the facilities Pike and RXML offer to perform the
quoting operation. The operation is server-transparent (that is, it adapts to the
various servers' quoting schemes.

Pike

The Pike solution is pretty straightforward: quoting is handled via the Sql.sql-
>quote(string) method. It returns a string, which is the quoted argument.

It is supposed to be used when assembling a query, and is strongly encouraged to
use it whenever a query is interactively built from some user's input: a malformed
input could break the query by causing an SQL syntax error. It's useless to say that it
could also be used maliciously, to completely alter the query structure, thus giving
access to the lowlevel database contents.

Let's write a small interactive Pike application which prints the background for user-
entered countries.

#!/usr/local/bin/pike
#define DATABASE "mysqgl://user:password@localhost/sample"

//sample program: find out some country's background information
int main() {

object readline=Stdio.Readline() ; //used for interactive
input
object db=Sgl.sqgl (DATABASE) ; //connect to the DB

readline->set prompt ("Country (g to quit)> ");

string input;

array (mapping (string:mixed)) result;

while (input=readline->read()) { //while !eof

4.3.2

4.3.3

if (input=="q") break; //exit on "g"
//query-building. I like to use sprintf to build parametric queries,
as
//it shows the query structure in the source (increased readability),
//as well as allowing easier control over the SQL statement
string query=sprintf ("select background from countries, ids
"where countries.country=ids.code and "
"name=’%s’",
db->quote (input) //notice the quoting!
) i
result=db->query (query) ;

if (!sizeof (result)) {
write ("No such country in the database\n");
continue;

}
write (result[0]->background+"\n") ;

RXML

There are two occasions in which you'll want to do quoting in RXML when performing
SQL-related operations: parametric query building and results quoting (for instance to
populate a selection list). In most cases the RXML parser tries to do the "sensible"
thing, but sometimes that's just not enough, and you'll need to manually override the
parser's "opinion".

On production systems, any degree of freedom is a risk: on such systems it is thus
recommended to always specify the encodingq, as it will lessen the probability of
errors, failures or security vulnerabilities.

Parametric Queries

You can use the standard entity-syntax to build parametric queries: just use entities
in your query strings. Make sure to force the sql encoding, or you might head into
trouble.

The example beneath does the same task as the above pike application using RXML.
It performs both of the encoding operations: results-encoding to populate a selection
list and variable encoding to perform a parametric query:

<form method="post" action="&page.url;">
Select a country: <select name="country">
<emit source="sqgl"
query="SELECT name, code FROM ids,countries
WHERE countries.country=ids.code
ORDER BY name">
<option value="& .code;">& .name;</option></sgloutput>
</select>
<input type="submit">
</form>

<if variable='form.country'>
<sgltable host="mysqgl://user:password@localhost/sample
query="SELECT name,background FROM countries, ids
WHERE countries.country=ids.code
AND ids.code='&form.country:sql;'"/>

</if>

Data Extraction

5.1

SQL Syntax

The most basic SQL syntax for a data-extraction query is:
SELECT what FROM table name[, table name ...] [WHERE conditions]

what defines what you wish to get from the query. It can be a column name (more on
column names later), a function to be performed on the retrieve data (more on this in
the functions chapter). The special notation '*' means "all columns from all the
specified tables".

In order to extract everything from a table, with RXML:

<sgltable border="1"
host="mysqgl://user:password@localhost/sample"
query="SELECT * FROM boundaries">

with Pike:

string parse (object id) {

object db=Sgl.sql ("mysqgl://user:password@localhost/sample") ;

array (mapping) results=db->query("select * from boundaries") ;

string output="<table border=1>";

foreach (results,mapping m) {
output+="<tr><td>"+m->country 1+"<td>"+m->country 2+"<td>"+
m->length+"</tr>\n";

}

output+="</table>";

return output;'

If we wanted to get the results only for a column in that table, we would have instead

with RXML:

<sgltable border="1"
host="mysqgl://user:password@localhost/sample"
query="SELECT length FROM boundaries">

Of course you can select more than one column, simply having what be a comma-
separated list of column names.

With RXML:

<sgltable border="1"
host="mysqgl://user:password@localhost/sample"
query="SELECT country 1, country 2 FROM boundaries">

Using a single table doesn't harness the power of relations. Those are not "physical"
entities, but are built when a query is executed if multiple tables are specified
together with conditions to explain how the data from the tables should be collated
(or "the tables are joined"). Usually an equality test is used to specify those
conditions, but it's not a requirement. The result of the join operation is a virtual table
merging those records from every involved table that satisfy the specified conditions.

51.1

5.1.2

5.1.3

Let's print the name of the known countries and the geographic regions they belong
to. The country names are in the 'ids' table, the regions are in the 'areas’ table, the
two are tied via the 'countries' table. The relations we'll use are two: ids.code must be
equal to countries.country, and countries.map_refs must be equal to areas.id

with RXML

<sgltable border="1"
host="mysqgl://user:password@localhost/sample"
query="SELECT ids.name AS country, areas.name AS region
FROM ids, countries, areas
WHERE ids.code=countries.country
AND countries.map refs=areas.id">

Column Names

A column can be addressed in two ways: "plain" and "dotted notation". The latter is
the more complete form, and is guaranteed not to be ambiguous. The former is
allowed for brevity's sake by most servers (including MySQL), but only when no
confusion is possible.

Aliases for Columns

It is possible (usually to have a function result with a simpler name) to alias the
names of the returned columns, simply extending the what parameter above with the
syntax

column name AS alias

The values will be then available in the result as "alias" column, rather than
"column_name".

With RXML:

<sgltable border="1"
host="mysqgl://user:password@localhost/sample"
query="SELECT country 1 AS first country,
country 2 AS second country FROM boundaries">

See the functions chapter to see how for an example when using functions.

Aliases for Tables

Table names can be aliased with the "as" syntax, too. This is especially important in
one case, and that is when you need to cross-reference a table with itself, or if a
table is involved in multiple relations with another. It's illegal in SQL to have two or
more tables with the same name mentioned in the tables list of a query.

With our sample database, it's necessary to alias a table if we want to expand the
country codes in the boundaries table to their names. In order to accomplish that
result, we will need to:

With RXML:

<sgltable border="1"
host="mysqgl://user:password@localhost/sample"
query="SELECT ids_l.name AS name 1,
ids_2.name AS name_2, length
FROM ids AS ids 1, ids AS ids_ 2, boundaries
WHERE ids_1.code=boundaries.country 1
AND ids_2.code=boundaries.country 2">

Here we aliased two times the 'ids' table for clarity's sake, we could have aliased it
only once. Also, we aliased the column names for the same reason.

5.1.4 No Tables Involved

It is possible to have queries which don't involve any table, simply by not specifying
the "FROM'" clause. Such queries are not very useful, except sometimes to perform
server-assisted translations.

With Pike:

> object db=Sqgl.sqgl ("mysqgl://user:password@localhost/sample") ;
Result: object;

> db->query ("select now() as time") [0]->time;

Result: "2000-02-29 12:12:57"

The conditional part of a query is explained in the following chapter.

h.2 Conditions

The condition part of the query, as shown in the "syntax" paragraph is a boolean
expression, usually arbitrarily complex (old versions of MiniSQL have heavy
limitations the syntax of this portion). Only rows that satisfy it will appear in the
results set. If none does, the results set will be empty.

When evaluating the condition, column names are substituted with the data they
contain, and operators are evaluated according to a well-specified grammar.
Constants must be quoted according to their type.

5.2.1 Numeric Constants

Integer and floating-point numbers are not quoted. They can be told apart because
floating-point numbers have the decimal separator (.). Usually the server's parser is
quite lenient though, fixing types when possible according to the context.

5.2.2 Column Names

These are not quoted. Since they mustn't be ambiguous this poses a bit of limitations
on column names. As a general rule, legal C variable names are legal column names
(unless they are reserved words of course). SQL is a bit more lenient than C, so you
should get a little more leeway.

5.2.3 String Constants and Quoting

Strings are quoted using the apostrophe symbol ('). If a string contains the literal
apostrophe character, it must be escaped. Different escaping schemes are specified,
the most usual ones being doubling it (i.e. 'lIt"s a shame') or prepending it with a
backslash (i.e. 'lt\'s a shame').

Let's obtain from our sample database the total area of Italy.

With RXML:

<emit source="sqgl" host="mysqgl://user:password@localhost/sample"
query="select name, area tot from ids, countries
where ids.code = countries.country and ids.name='Italy'>
& .name;'s total surface is & .area tot; sq. km.
</emit>

5.2.4

5.2.5

5.2.6

5.3

5.4

Other Data Types

Other data types are usually represented as formatted string, which get interpreted
by the server according to the context.

The LIKE Operator

This operator is used to do glob-like matching. It has the syntax value LIKE PATTERN
where the value is usually a column, and the pattern a string literal, possibly
containing two magic characters: '_' and '%', which act like glob characters '?' and '*',
that is they match any (single) character, and any arbitrarily long sequence of any
character. If what you're matching against contains the literal '_' or '%' characters,
you can escape them prepending the backslash character '\'.

Let's try to find out the countries neighbouring Italy. The right way to do so would be
looking in the 'boundaries' table. But a summary can be found in the
countries.location text, and we'll use that.

With RXML:

<sgltable border=1 host="mysqgl://user:password@localhost/sample"
query="select name from ids, countries
where countries.country=ids.code and location like '$italy%'">

Notice that the "column like '%something%" syntax (with leading and tailing globs) is
very inefficient, and should be avoided whenever possible.

MySQL offers the more powerful REGEXP operator, with the syntax value REGEXP
expression where the value is usually a column name or a function result, and
expression is a string-quoted regular expression.

NULL Column Values

Some columns can be empty, or (in SQL terms) be NULL. To deal with them when
selecting data, you use the 'IS' syntax, which takes the form value Is [NOT] NULL
where value can be obtained from a a column (thus be a column name) or can be a
constant value (of course it would be rather dumb to evaluate a constant expression,
but you can of course do that if you wish).

Sorting
Data in a result is in undefined order. To have it sorted to some other order, the

ORDER BY clause can be used. It modifies the basic query syntax:

SELECT <columns> FROM <table> [, <table> ...] WHERE <condition>
ORDER BY <column name> [DESC] [, <column name> [DESC] ...]

This will sort the returned rows according to the specified columns, depending on the
column type (numerically if the column type is numeric, syntactically if the column
type is textual, etc.) If the DESC modifier is specified, the rows will be sorted in
reverse (descending) order.

Limiting

It is sometimes useful not to retrieve all the rows in a query.

You can do it using SQL or (in Pike) you can do it by simply not using some of the
results you fetch.

Doing it in SQL has some advantages, for instance it will reduce the load on your SQL
server, your Pike application and your internal network. On the other side, the syntax
for performing such an operation is not part of the SQL standard, and so every server
adds its own extensions to perform this operation.

We will introduce the MySQL syntax here. For other systems, consult your server's of
choice SQL reference manual.

MySQL offers limiting via an extension of the SELECT syntax, which gets changed like
this:

SELECT <columns> FROM <tables> [WHERE <condition>] [ORDER BY <columns>]
[LIMIT [offset, Jhowmany>]

offset and howmany are two numbers. When returning rows, MySQL will skip the
first offset, and only return howmany.

Fetch the 20th to 30th countries with their associated codes (sorted by country
name) with the 'LIMIT' syntax, in RXML:

<sgltable border=1 host="mysqgl://user:password@localhost/sample"
query="select name,code from ids order by name limit 20,10">

...or with Pike, using the query() function and result selection:

object db;
array (mapping (string:mixed)) result;
db=Sgl.sqgl ("mysql://user:password@localhost/sample") ;
result=db->query ("select name,code from ids order by name");
if (sizeof (result)>20)

result=result[20..];

else
result=({});

if (sizeof (result)>10)
result=result[..10];

foreach (result,mapping m) {
write (m->name+"\t"+m->code+"\n") ;

}

The two sizeof()-based conditionals are needed because when slicing arrays, we
need to make sure that valid indexes are used, and that the required semantics are
respected.

With Pike, using the big_query() function and result selection:

object (Sgl.sqgl) db;
object (Sgl.sql result) result;
int j;
db=Sgl.sqgl ("mysql://user:password@localhost/sample") ;
result=db->big query("select name,code from ids order by name");
for (j=0;j<19 && result->fetch row();j++)
; //empty body, it's all done in the condition
for (§=0;3<11;j++) {
array row;

if (! (row=result->fetch row()))
break;
write (row[O]+"\t"+row[1l]+"\n"); //row[0] is the name, row[l] is the

code

}

5.5

5.5.1

5.5.2

5.5.3

Functions

Whenever a column or a constant can be used in a query definition, a function can
be used instead. Functions perform operations on the data, the usual quoting rules
applying to their arguments.

The available function and their names names vary wildly from server to server, as
does their syntax. We'll introduce here the most important MySQL functions. For
further information, consult your server's documentation.

Arithmetic and math functions

+, —-(unary or binary), / (with infix notation), *
ABS (X)

SIGN (X)

MOD (X Y)

modulo, like 'X % Y'in C

FLOOR (X)
CEILING (X)
ROUND (X)

rounding operators
LEAST (X, Y,...)

returns the smallest of its arguments
GREATEST (X, Y,...)

returns the greatest of its arguments

Comparison and logic functions

equality
= or <>
dis-equality

>, >=, <, <=
IS [NOT] NULL

true if the compared value is (not) NULL
expr IN (value, ...)
true if the expression expr appears in the list

NOT or !
OR or |
AND or &é&

logic operators

String comparison and operations
value LIKE pattern

see the Conditions page
value REGEXP pattern

performs a regular-expression match
CONCAT (strl, str2,...)

concatenates the arguments

5.5.4

5.5.5

LENGTH (str)

returns the length of its argument
LEFT (str, len)

return the leftmost len characters
RIGHT (str, 1len)

return the rightmost len characters
SUBSTRING (string, start at,length)

returns length characters starting from position start_at
TRIM ([LEADING|TRAILING|BOTH] FROM string)

trims leading, trailing or both spaces from string
LOWER (string)

returns the string in lower case
UPPER (string)

returns the string in upper case
PASSWORD (string)

returns a Mysql password that checks against string
ENCRYPT (string[,salt])

same as the Unix crypt(3) function. If supplied, 'salt' should be 2 characters long.
Otherwise it uses a random salt.

Control flow operators
IFNULL (exprl, expr2)

if exprl is not null, returns it, otherwise it returns expr2
IF (exprl, expr2,expr3)

if exprl is true, returns expr2, else expr3

Date-related functions
DAYOFWEEK (date)
returns the weekday index for date (Sunday=1...Saturday=7)
DAYOFMONTH (date)
returns the day of the month for date (1..31)
DAYOFYEAR (date)
returns the day of the year for date (1..366)
MONTH (date)
returns the month for date (1..12)
YEAR (date)
returns the year from date (1000..9999)
HOUR (time), MINUTE (time), SECOND (time)
time extraction functions
CURRENT DATE, CURRENT TIME, CURRENT TIMESTAMP

'magic' variables, that are treated like functions. They contain the current date,
time, and timestamp respectively.

5.5.6

5.5.7

5.6

Miscellaneous functions
LAST INSERT ID()

returns the last value automatically generated by an 'AUTO_INCREMENT'-type
column

Special functions

These functions are somewhat 'special', in that they have different semantics when
used in conjunction with the 'GROUP BY' clause (which is not covered in this manual).

COUNT ([DISTINCT] expr)

if 'expr' is a column name, it returns the number of non-null rows returned for that
column. If it's an asterisk '*', it gives the number of returned rows. If the DISTINCT
keyword is specified, duplicate values are not counted.

AVG (expr)

Returns the average of the columns matched.
MIN (expr)

Returns the least of the columns matched.
MAX (expr)

Returns the greatest of the columns matched.
SUM (expr)

Returns the sum of the columns matched.

Show the current day of the week:

$ mysql -u user -p password sample

[MySQL Monitor]
> select dayofweek (now()) as day;

Count the number of rows in a table:
> select count(*) from ids;
Count the number of countries whose name begins by 'i":

> select count(*) as number from ids where ids.name like 'I%'

Features Missing from MySQL
What's missing?

There are a few very powerful features ANSI SQL provides that we haven't mentioned,
and that we won't go into detail on.

The main excu.. ahem, reason for this is that they're quite powerful and complex and
thus out of scope for this manual. Furthermore, they're not supported by all SQL
servers. MySQL in particular doesn't support them.

The features we're talking about here are views and sub-queries. When your SQL
server of choice supports them, Pike and Roxen CMS can use them.

Also, SQL is designed to support transactions via some special keywords. However,
not all servers implement this feature. If you need transactions, you also need an

experienced database administrator to optimize your SQL and your application in
general, so you won't find any reference to that here. Sometimes used as a simpler
scheme in place of transactions, table locking is available for instance on MySQL.
Refer to the MySQL manual for further information on the topic.

6

Data Insertion

6.1

6.1.1

Insertion Syntax

While data extraction queries enforce the relationships between the tables in a
database, data insertion queries do not. Data is always inserted into a table, never
into a relation.

This fact is reflected in the SQL syntax for an insertion query. There are of course a
few variations:

INSERT INTO table VALUES (value [, value ...])

is the basic version. It only allows to specify all the values in a table row. The values'
order is of course relevant: it must correspond to the order the columns were defined
in when the table was created.

Sometimes it's preferrable not to specify data for all the columns: data may be
unknown, automatically completed by the server (unique IDs, timestamps, ...) or the
default value might be acceptable for some columns. This can be obtained with the
alternate syntax:

INSERT INTO table (column [, column ...]) VALUES (value [, value ...])

A value must be supplied for each column specified in the columns-list. Unspecified
columns will be assigned the default value or NULL. If no default value is specified
and NULL is declared invalid for a column, an error will be thrown when trying to
insert.

A particular form of subquery can be used to fill in a table (usually temporary tables).
This is the only form of subquery supported by the MySQL database. The syntax is:

INSERT INTO table [(column [, column ...])] SELECT ...

There are a few limitations for the SELECT query, check your server's of choice
manual to know more about them.

An insert-type query doesn't return any results, so you should use SQLQUERY in
RXML, or not expect any results if you're using Pike. Also, you have to watch out and
Quoting quote the values you're inserting. Program errors and possible security
breaches are possible of no proper quoting is used.

Insertion Query with Pike

This program was used to build the sample database, and as such it's hackishly raw.
It takes the contents of a file named "country-codes.data" in the current directory.
That file has one entry per row, with two tab-separated fields (country code and
country name). Those same data are dumped into the sample database.

int main () {

object 0=Sgl.sqgl ("mysql://user:password@localhost/sample");
array (string) rows=Stdio.read file("countries-codes.data")/"\n";
rows—=({""});

6.1.2

foreach (rows,string row) {
array (string) fields=row/"\t";
o->query ("insert into ids(code,name) values ('"+fields[O0]+"','"+
o->quote (fields[1])+"")");

Insertion Query with RXML

Performing insertion queries with RXML must be considered with extreme caution:
while it is a great system, it is undoubtably less flexible than the Pike programming
language.

This simple RXML page will allow you to insert a new country - country code entry into
the sample database:

<form action="&page.url;" method="post">

Country name: <input name="name">

Country code: <input name="code" maxlength="2">

<input type="submit"><input type="reset">

</form>

<if variable="form.name">
<!-- we're inserting data here -->
<sglquery host="mysqgl://user:password@localhost/sample"
query="INSERT INTO ids (code,name)
VALUES ('&form.code:sqgl;','&form.name:sqgl;"')"/>
</if>

Notice that while this sample works, and can be used in a development/internal
environment, it is not suited to be used in a production environment: events such as
a duplicate entry will cause uncaught exceptions, which could potentially leak
information such as the database's password or the implementation internals.

See <catch> to address these issues.

Using RXML Features with SQL
Databases

7.1

The <tablify> Container

This page isn't meant to be a reference for tablify, as it can be found on the <tablify>
page.

The <tablify> container can be used to make (plain or nice) HTML tables out of
formatted text, as well as allowing to perform some operations on the data like
sorting.

Of course it is not mandatory to use it to build tables, but it can save some work,
especially to build "nice" tables. The <sgltable> tag can be used for the same
purpose too, but it doesn't have the same flexibility, and it is being slowly phased out,
so support for it might be dropped in the future.

Build a table with <emit> to print the total area of each known nation:

<table border="1">

<tr><th>Country</th><th>Total area</th></tr>

<emit source="sqgl"
host="mysqgl://user:password@localhost/sample"
query="SELECT name,area_ tot FROM ids,countries

WHERE ids.code=countries.country">

<tr><td>&_ .name;</td>

<td>& .area tot;</td></tr>

</emit>

</table>

Doing the same with tablify:

<tablify nice="yes" interactive-sort="yes" size="3"
titlecolor="white" cellseparator="1[">
Country|Total Area
<emit source="sqgl"
host="mysqgl://user:password@localhost/sample"
query="SELECT name,area_ tot FROM ids,countries
WHERE ids.code=countries.country">
& .name; |& .area tot;</emit>
</tablify>

Tablify expects to receive its data in a tabular form, with newline-separated rows of
tab-delimited entries. In this case | chose to override the default cell separator
because some editors try to translate the tab character to a sequence of spaces.
Should you choose to do the same, make sure that your delimiter is a character that
does not occur in your dataset.

While | shamelessly used the interactive-sort parameter to tablify, it is not
recommendable to use the tablify sorting functions in general, but rather using the
SQL "order by" clause for performance reasons.

7.2

7.3

The Business Graphics Module

The business graphics module (providing the diagram tag) allows Roxen CMS to build
different kind of diagrams on-the-fly. A reference chapter on the module's features
(ref: the business graphics module chapter) is available.

We won't duplicate the reference specification, but instead focus on how to use a sql
data-source to feed a diagram generation tag.

We'll start off with an example:

Show a graphic documenting the total areas for the known countries:

<diagram type=barchart horgrid name="Areas"
namefont="franklin gothic demi" namesize=25>
<data xnames form=column xnamesvert>
<sgltable ascii host="mysqgl://user:password@localhost/sample"
query="select name,area land,area tot from ids, countries where
ids.code=countries.country order by area tot desc" />
</data>
<legend separator=|>Total area|Land area</legend>
</diagram>

In the example, the data are fed by columns rather than by rows (which is the default
for the diagram tag) because SQL modules are better suited for that kind of layout.

The <sgltable> tag, together with the ascii parameter, is the most suited system to
feed data to a <diagram> tag.

You always need to watch out for possible field separator misinterpretation problems:
the default field separator (the tab character) and line separator (newline) are not
usually found in SQL-obtained data-sources, especially the numeric data used to feed
the diagram module. But you must not take this for granted, so make sure to check,
and possibly use a different separator and the <sgqloutput> tag to make sure.

The <emit> and <sqlquery> Tags
The <emit> tag is a plugin-based data management system.

Generally speaking, <emit> will iterate through all the data in a dataset such as the
result of a SQL query, processing the contents of the tag for each item in the dataset.
The source of the dataset is specified in the tag's arguments, along with a few
source-dependent parameters. See the chapter on emit in the creator manual for
more details. The emit tag allows to take full advantage of the Roxen CMS variable
scopes.

Applying this to the case of SQL queries, the dataset is a tabular result, and the items
are the result's rows. The source to be used is named "sqgl", and it takes as additional
arguments host (the SQL-URL of the host to be contacted) and query (the SQL query
to be executed). Additionally, it accepts the same parameters as the sqloutput tag.

The example in the tablify chapter can be rendered with emit as:

<table border=1>

<emit source="sqgl" host="mysqgl://user:password@localhost/sample"
query="select name,area tot from ids, countries where
ids.code=countries.country">

<tr><td>&_ .name;</td><td>&_ .area tot;</td></tr>

</emit>

</table>

Remember: _ is the default scope. Should it be unavailable, or should you want to
use it for some other tag, you can use another scope, like this:

<table border=1>
<emit source="sqgl" host="mysqgl://user:password@localhost/sample"
scope="queryscope"
query="select name,area tot from ids, countries where
ids.code=countries.country">
<tr><td>&queryscope.name;</td><td>&queryscope.area tot;</td></tr>
</emit>
</table>

The sqlquery tag can be rendered with an empty emit tag

<sglquery host="mysqgl://user:password@localhost/sample"
query="insert into foo(bar) values ('gazonk')">

can thus be translated into

<emit source="sqgl" host="mysqgl://user:password@localhost/sample"
query="insert into foo(bar) values ('gazonk')" />

There is no builtin way to emulate the sqltable tag, you'll have to follow the syntax
described for the <tablify> tag previously.

Database Maintenance

8.1

8.2

Database Creation

Database creation is not a part of the SQL standard, and the details are very much
server-specific. The Pike SQL interface, however, offers two functions as part of the
Sql.sql object that can serve for this purpose.

Create a "foo" database:

void create new database(string dbname)
{
mixed error;
object db = Sgl.sqgl("mysqgl://admin:password@localhost/") ;
error = catch {
db->create db ("newdb") ;
bi
if (error)
{
werror ("Error: "+db->error ()+"\n");
return;
}
}

Delete the "foo" database:

void delete database(string dbname)

{
object db = Sgl.sqgl ("mysqgl://admin:password@localhost/");
db->drop db ("newdb") ;

}

Of course the catch {} clause in the first example is overkill here, these operations
are really REALLY meant to be used interactively, and so a stack backtrace can be
very descriptive and useful.

Most servers provide an SQL syntax to perform this operation. In some cases creating
a database is so expensive that an external app is used to perform the operation.
When your server supports it via SQL, using SQL is advised. This functions are
provided mostly for MiniSQL compatibility (MiniSQL doesn't provide an SQL syntax to
create a database).

Creating Tables

Tables are created via a mostly standard SQL syntax. When a table is declared, the
names and types of its columns are specified, possibly along with constraints, default
values and other options.

Most databases, however, allow changing a table structure at any time. Be warned
that doing so without breaking any constraint might be not trivial. We won't go into
details on how to modify a table structure here. You can check your server's SQL
reference manual, looking for the keywords "ALTER TABLE".

Also, we won't go into details on referential integrity constraints. If you need them,
you also need a skilled database administrator, and explaining them here would be
out of scope.

8.2.1

Again, the SQL standard is not well-specified here. While the basic syntax to create a
table is standardized, column types are not (except a few). Also, some servers allow
defining custom types, further complicating the matter. Finally, the syntax to define
constraints is heavily dialectized, save for the most basic functions. Check your
server's documentation for further informations.

We'll use the MySQL syntax as reference.

The basic syntax is:

CREATE TABLE name (declaration[, declaration ...])

The declarations can be columns, keys or indices (see the indices chapter) in various
flavors. Let's take a look at a column declaration syntax first: it is

column name column_ type [NOT NULL] [DEFAULT value] [AUTO_ INCREMENT]
[PRIMARY KEY]

The column name can be pretty much anything, as long as it doesn't clash with any
reserved word. For simplicity's sake, using short, descriptive names is advised. Dots,
spaces and other non-alphabetical characters are forbidden.

If the NOT NULL clause is specified, it poses a constraint on the column, namely that
it must be specified (or, in other terms, it can't be NULL). An attempt to insert a row
without specifying this value will result in an SQL error and a (Pike or RXML)
exception.

If the DEFAULT clause is specified, inserting a row without specifying this column will
result in inserting the default value instead. If it's not specified, NULL will be inserted
instead (possibly clashing with the NOT NULL condition).

AUTO_INCREMENT is only meaningful for numeric types, and useful only for integer
types. Its behavior is like a specialized default value: if NULL is specified as data for
the column, then the actual inserted value will be the maximum present value + 1.
This is useful for creating unique IDs for the rows in the table.

We'll return on the PRIMARY KEY argument later.

SQL Data Types

All servers should support at least the INTEGER, REAL, CHAR and VARCHAR types.
Unluckily, that's about as far as it goes, and there is even no wide-accepted
agreement on the semantics of CHAR and VARCHAR.

INTEGER

is what it seems, an (usually 32-bits) integer. It is signed, unless the keyword
UNSIGNED (e.g. INTEGER UNSIGNED) is used.

CHAR

is a fixed-length character string. Some servers space-pad it at the end (and use
the VARCHAR type for unpadded strings), others don't. MySQL doesn't pad it.

VARCHAR

is a variable-length string. Usually it differs from CHAR in terms of how it is stored
on disk: while CHAR values allocate the storage space for the entire field length
(and if it's shorter leave it unused), VARCHAR values are usually stored as a
(length, value) pair and are packed. This means that they use less space on disk,

8.2.2

but are somewhat slower to access. More importantly, usually VARCHAR values
can't be used in indices or keys.

MySQL Data Types

Of course servers provide many more data types. Here are some details on MySQL's
types:

TINYINT [UNSIGNED], SMALLINT [UNSIGNED], MEDIUMINT [UNSIGNED], INTEGER
[UNSIGNED], BIGING [UNSIGNED]
are respectively 8-, 16-, 24-, 32-, 64-bit wide integers (signed, 2's complement
unless the UNSIGNED clause is specified). Notice that while performing internal
arithmetic all values are transformed into 64-bit signed integers, so even for
BIGINT UNSIGNED (which is theoretically 64-bit wide, no more than 63 bits values
should be used.

FLOAT and DOUBLE

are what you can expect them to be (single- and double-precision floating-point
numbers).

NUMERIC

(length,decimal) is an unpacked floating-point number. It is stored as a string, one
char per digit. If DECIMAL is O, then the numbers are considered integer, and
can't have a decimal part. LENGTH is the size, and must be in the 0-255 range.

DATE, DATETIME, TIME

are date-related types. The legal range for them is from '1000-01-01 00:00:00' to
'9999-12-31 23:59:59'. MySQL uses the "yyyy-mm-dd hh:mm:ss" syntax to display
dates, but also understands others. It is however recommended to stick to the
default.

TIMESTAMP

is a somewhat magic column-type. It stores a date and a time as a 32-bit UNIX
datetime value, thus the legal range is from '1970-01-01 00:00:00' to sometime
in 2037. It is magic in that when you perform an INSERT or UPDATE operation on
a row and don't specify the value for a TIMESTAMP column, MySQL will fill it for
you with the date-time of the operation. Useful for time-stamping operations
(hence the name).

CHAR (length) [BINARY]

is a fixed-length string as described above. Padding spaces are not added by
MySQL. Comparisons are case-insensitive unless the BINARY keyword is
specified. length must be in the 1-255 range. Values longer than the specified
length are truncated.

VARCHAR (length) [BINARY]
is a variable-length string. Same arguments as the CHAR type apply.
TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB

are amorphous storage spaces, long at most (2°8-1), (2°16-1), (2”24-1) or
(2732-1) bytes.

TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT

are the same as BLOBS, save that comparisons between values are case-
insensitive.

8.3

8.3.1

Indices

Indices are one of the reasons why RDBMSes are fast when retrieving data: they are
built from the data in user-specified columns when rows are inserted into the
database and are used when data is selected or retrieved, thus avoiding in most
cases the necessity to do a full table scan when performing read operations. Indices
cause insertion operations to be slightly slower, but can make data extraction
operations and joins orders of magnitude faster. Indices can span multiple columns,
and could even include all the columns (although such an index would be of limited
use). Usually DBMS allow to define more than one index per table (the maximum
number might be constrained).

Keys (or unique indices) can be seen as "a stronger kind of index". A key is an index
which is also constrained to be unique: having two rows with the same key in a table
is forbidden, for any key defined on the table. The interpretation the various
databases give to this concept varies, however. For some (including MySQL), a key is
merely an alias for "index". For others, indices can be used to enforce constraints but
have no impact on data organization while keys do. For further information on your
server's concept of keys, consult its manual.

One key is special, and is named "primary key". The data is usually put in storage in
such a way that read operations involving only the primary key are even faster than
operation involving keys or indices. It is also usually very slow to update, and is not
allowed to contain NULL values.

Unique indices are the way provided by SQL to avoid duplicate rows, defining one
that spans all the columns you wish to maintain unique, maybe even all of them.
There can be multiple constraints, that can be expressed by defining multiple indices.

The syntax to create an index varies from RDBMS to RDBMS. However, there are two
main syntaxes we'll explain here. Consult your server's documentation for details on
the syntax it supports.

MySQL Syntax

MySQL has indices and keys definitions inside table creation clauses. The basic
syntax is:

CREATE TABLE name (declaration [, declaration ...])

where a declaration is either a column declaration, a key declaration or an index
declaration. For columns declaration, see the Creating Tables page.

For indices, unique indices and primary key the syntax is respectively:
PRIMARY KEY (column [,column...])
UNIQUE INDEX index name (column [,column...])
INDEX index name (column [,column...])
The names for indices (unique or not) must be unique in a table (no pun intended).
This is the defininion for the "areas" table in the sample database:
CREATE TABLE areas (
id tinyint NOT NULL auto_ increment,

name char(20) NOT NULL,
PRIMARY KEY (id),

8.3.2

8.3.3

8.4

UNIQUE INDEX name (name)
)

There are two constraints: the area id must be unique, as must the area name. Joins
are made on the primary key for efficiency purposes.
Postgres Syntax

With PostgreSQL and other databases indices are seen not as part of a table
definition, but are "external" entities attached to a table. They are created by a
CREATE clause, whose basic syntax is

CREATE [UNIQUE] INDEX ON table (column [, column])

Primary keys are defined using the same syntax as MySQL.

The definition above would have been with PostgreSQL:

CREATE SEQUENCE areas seq

CREATE TABLE areas (
id tinyint NOT NULL DEFAULT NEXTVAL ('areas_ seq'),
name char (20) NOT NULL,
PRIMARY KEY (id)

)

CREATE UNIQUE INDEX unique area ON areas (name)

Notice that recent versions of MySQL (3.22 and later) and PostgreSQL support both
syntax styles.

Single-Column Primary Keys

If your table has a primary key spanning over a single column, you can declare it
simply appending the "PRIMARY KEY" keyword to the column definition:

CREATE TABLE areas (
id tinyint NOT NULL auto_ increment PRIMARY KEY,

Notice that in most cases the PRIMARY KEY clause implies the NOT NULL clause.

Dropping
To delete indices, tables or databases, the DROP command is used in its variations:

To delete an index (where the CREATE INDEX syntax is used), the syntax is:
DROP INDEX name

To drop a table the syntax is:

DROP TABLE name

The table, its contents and definition will be deleted from the database irrevocably.

To drop a database altogether (where supported), you can use:

DROP DATABASE name

The pike SQL-interface provides a specific-purpose function to drop a database: this
is mainly for compatibility with MiniSQL where the operation of dropping a database
is demanded to a specific-purpose API function, named drop_db.

Using SQL:

object db = Sgl.sqgl("mysqgl://admin:pass@localhost");

mixed exception;

exception = catch {
db->query ("DROP DATABASE test");

}i

if (exception)

{
werror ("Error while dropping the database: "+db->error ()+"\n");
throw (exception) ;

}

Using the API functions:

object db=Sgl.sql("msqgl://admin:pass@localhost") ;

mixed exception;

exception=catch {
db->drop db("test");

}i

if (exception)

{
werror ("Error while dropping the database: "+db->error ()+"\n");
throw (exception) ;

}

Notice that | haven't either tried to fetch results (there's no result to fetch anyways)
and the exception handling has been very limited, and for diagnostic purposes only:
these operations are really meant to be used only interactively.

