

Roxen CMS 5.4
Web Developer Manual

 2

 Roxen Internet Software AB
© 2012 Roxen Internet Software AB.
All rights reserved.

Under the copyright laws, this
document may not be copied, in
whole or in part, without the written
consent of Roxen Internet Software.

Roxen Internet Software
Box 449
SE-581 05 Linköping
Sweden
www.roxen.com

Your rights to the software are
governed by the accompanying
software license agreement.

Every effort has been made to ensure
that the information in this document
is accurate. Roxen Internet Software
is not responsible for printing or
clerical errors.

Other company and product names
mentioned herein are trademarks of
their respective companies. Roxen
Internet Software assumes no
responsibility with regard to the
performance or use of these products.

2014-03-13 Introduction 3

Contents

1 Introduction 6

2 About the document 7

2.1 Notation example 7
2.1.1 Tag attributes 7
2.1.2 Tag entities 7
2.1.3 Subtags 7

3 Basic Concepts 9

3.1 URL 9
3.1.1 Absolute URLs 9
3.1.2 Relative URLs 10
3.1.3 Absolute path URL 10
3.2 HTTP 10
3.2.1 Authentication 11
3.2.2 Cookies 11
3.2.3 Content-Type 11
3.3 XML 11
3.3.1 Tags 11
3.3.2 Attributes 12
3.3.3 Entities 12
3.4 XSLT 12

4 Roxen Concepts 13

4.1.1 Scripts 13
4.1.2 Modules 13
4.1.3 RXML 14
4.1.4 In-page scripting 14
4.2 RXML Evaluation 14
4.2.1 Evaluation order 15
4.3 URL Extensions 15
4.3.1 Index pages 16
4.3.2 Path info 16
4.3.3 Prestates 16
4.3.4 Config states 17

2014-03-13 Introduction 4

5 RXML Variables and Entities 18

5.1 Quoting variable references 18
5.2 Scopes 19
5.3 Attribute splicing 19

6 RXML Variable Entity Encoding and Decoding 21

7 RXML Type System 25

7.1 Context sensitivity 25
7.1.1 Type propagation 26
7.1.2 Tags without results 26
7.2 Sequential and non-sequential types 26
7.2.1 Non-sequential type any 27
7.2.2 Sequential type array 27
7.3 Parsing rules 27
7.3.1 Ignoring comments and whitespace 27
7.3.2 Literal text 28
7.3.3 Handling of unparsed tags and PIs 29
7.4 Subindexing 30
7.4.1 Indexing arrays 30
7.4.2 Indexing scalar values 30
7.4.3 Indexing scopes and mappings 31
7.5 Special types and values 31
7.5.1 any 31
7.5.2 nil 31
7.5.3 The empty value 32
7.6 String types 32
7.6.1 String values 32
7.6.2 string 33
7.6.3 text/plain and text/* 33
7.6.4 text/xml and text/html 34
7.7 Numeric types 34
7.7.1 int 34

7.7.2 float 34
7.8 Container types 34
7.8.1 array 35
7.8.2 mapping 36

2014-03-13 Introduction 5

8 Managing templates in a Basic site 37

8.1 Factory-installed template files 37
8.1.1 Navigation menus 38
8.1.2 CSS styles 38
8.1.3 External visibility 39
8.2 Customizing template parameters 39
8.3 Creating customized layouts 39
8.4 Controlling the component editor 40
8.4.1 Directives in template files 40
8.4.2 Directives in content files 41
8.4.3 Examples on field/component locking 42
8.5 Defining component variants 42
8.5.1 Purpose of variants 42
8.5.2 Configuring variants – current Roxen CMS versions 43
8.5.3 Configuration variants – Roxen CMS version 4.0 or earlier 43
8.6 Controlling the Insite Editor toolbar 43
8.6.1 Disabling toolbar commands 43
8.6.2 Spellchecker 44
8.6.3 Author 45
8.6.4 Local timezones 45
8.6.5 Custom CKEditor filters 45
8.6.6 Detection of simultaneous editing 45
8.7 Advanced control of the component editor 46
8.7.1 How it works: 46

2014-03-13 Introduction 6

1 Introduction

This part of the documentation is intended for anyone who creates and publishes
web pages using a Roxen WebServer. It describes the functionality Roxen WebServer
provides that can be used to automate and ease the creation of both advanced static
content as well as dynamic Internet applications. Roxen WebServer and Roxen CMS.
It describes the functionality Roxen CMS and Roxen WebServer provides that can be
used to automate and ease the creation of both advanced static content as well as
dynamic Internet applications.

Most of Roxen CMS's and Roxen WebServer's functions are available as RXML tags,
easily learned by anyone who knows HTML, XHTML or XML. A basic introduction is
provided but the reader is encouraged to obtain more knowledge from other sources,
should this information be new.

The manual is structured into four different parts. First is the introductory part, which
you have just entered, that outlines different technologies and concepts important for
creating websites with Roxen products. After the general introductions follows a
closer look at Roxen specific technologies with the main focus on RXML, including the
uses of RXML and the syntax and semantics of the RXML language. The third part of
the manual is a reference part which lists and describes all user tags. The list is
grouped by the different tags general application so that it should be easy to find a
tag in a solution-centric approach. Several reference chapters start out with a closer
look at some common properties of the tags in the group. The last chapter is an
alphabetical list of all user tags.

2014-03-13 About the document 7

2 About the document

The reference documentation found in this manual is directly derived from the
documentation in the source code of Roxen WebServer and its modules. The purpose
of this approach is to get the documentation as close to the actual implementation
so that is should be as easy as possible to keep it up to date. The big benefit of
having the documentation in the source code is possibility to online documentation
within the product. All tag documentation found in this manual is available through
the <help> tag as well as the documentation tab in the administration interface.

If you want to know more about a tag when you are developing a web page, simply
add the <help> tag to a page and view it to see the latest documentation for that tag.
Note that the module in which the tag is defined must be loaded into the server in
order for this feature to work. The online documentation feature is however not
restricted to only modules originating from Roxen Internet Software. Any third party or
locally developed modules containing a compatible documentation may be viewed by
the online documentation feature.

2.1 Notation example
This is how the tag documentation looks like.

<example-tag></example-tag> (Provided by module: TagDoc Notation
exemplifier)

This tag has been flagged as a container tag, i.e. you can put content into it like
this: <example-tag>content</example-tag>. A tag may also be tagged as a
tag-only tag, i.e. you may only write it as <example-tag/>.

2.1.1 Tag attributes

age="number"

This is the documentation of the 'age' attribute to the <example-tag>. In this
case the attribute accepts a number, e.g. <example-tag
age='42'></example-tag>. This attribute is required. If it doesn't exist in the
tag you will get an RXML parse error.

sort="{up, down}" (up)

This is the documentation of the 'sort' attribute. The sort attribute may have either
the value 'up' or the value 'down'. If the attribute is omitted, the tag will assume
the value 'up'.

2.1.2 Tag entities

&_.ent; (Provided by TagDoc Notation exemplifier)

This entity is an internal entity of the <example-tag> and only available inside it,
just like <internal>.

2.1.3 Subtags

<internal/> (Provided by module: TagDoc Notation exemplifier)

This is an internal tag to <example-tag>, which means that it is only available
inside the <example-tag>. Below is an example of how tag usage examples

2014-03-13 About the document 8

looks like. Such examples may be a single box just showing how to write the tag or
it could be a double box showing both the code and the result.

<example-tag><internal/></example-tag>

2014-03-13 Basic Concepts 9

3 Basic Concepts

In this chapter you'll find an overview of the concepts and standards that web servers
in general and Roxen WebServer and RXML in particular are built upon. These are
only provided as a short introduction and background information to what follows in
this manual.

We will take a look at three main topics, URLs, HTTP and XML. URLs are used to point
out and locate a resource on the Internet. HTTP is used to retrieve that resource and
interact with the webserver, and XML is used as the basis for describing resources.
The URL section will introduce http/https/ftp URLs and outline the differences
between absolute URLs, relative URLs and absolute path URLs. The HTTP section will
discuss the stateless properties of the HTTP protocol and explain how this affects
HTTP authentication and the need for cookies. It then ends by quickly mention the
role of MIME types. Finally the XML section introduces the XML syntax and outlines
the XML application XHTML. There is no mention of HTML, since those who do not
know HTML are better off learning XHTML, and those who do know HTML have no
problems applying XML restrictions on HTML to get XHTML.

3.1 URL

3.1.1 Absolute URLs

One of the most important concepts of the WWW is the URL standard, Uniform
Resource Location. A URL is used as a pointer to a resource, usually a web page, on
the Internet. A typical URL may look like this:

http://www.roxen.com/index.xml

This URL can be split into three different parts. Everything before "://" is the protocol,
in this example "http", which is the hyper text transfer protocol normally used on the
WWW. Between the "://" and the first "/" is the host and the rest is the path. What is
then the actual information contained in the line above? It simply means retrieve the
document "/index.xml" from the host "www.roxen.com" with the HTTP protocol. Other
common protocols are "https", which is secure HTTP utilizing the security layer SSL or
TLS, and "ftp", which is an older way of transporting files.

The host part of the URL may optionally include a port description. If you consider the
host domain as an address to the host, you can consider the port number the
apartment number. The port number is implied by the selected protocol, e.g. 80 for
http and 443 for https, but sometimes you want to reach a site that is not on the
default port. This is done by appending ":" and the port number to the host part of the
URL. The following URL points to the same resource as the above one.

http://www.roxen.com:80/index.xml

These types of URLs, containing protocol, host and path, are referred to as absolute
URLs.

2014-03-13 Basic Concepts 10

3.1.2 Relative URLs

Another often used type of URLs is relative URLs. They refer to another document
from within a document, e.g:

search.xml

The URL above means "the file called search.xml in the same directory as the
document referring to it". If a link to "search.xml" was found in
"http://www.roxen.com/index.xml" it means
"http://www.roxen.com/search.xml". But if the same URL was found as a link in
"http://www.roxen.com/platform/index.xml" it would mean
"http://www.roxen.com/platform/search.xml".

A relative URL may also point to directories above or below its position. If we want to
link to search.xml in a subdirectory games it would be "games/search.xml". If we on
the other hand want to link to search.xml in the directory above we would use the ".."
to denote up, e.g. "../search.xml". It is possible to combine several ".." tokens, or
combine them with directory names to walk down another path branch, e.g.
"../../platform/search.xml".

3.1.3 Absolute path URL

Somewhere between absolute and relative URLs we'll find the absolute path URLs.
They are not relative with respect to where on the server the URL was found, but it is
relative with respect to on which server it was found.

/index.xml

 The above URL means "the file index.xml in the top directory of the current server".
Choosing the right URL for the right occasion will often reduce maintenance
problems. A group of files that uses relative links between them can easily be moved
to another directory or server. A file that links to the main search page with absolute
path URLs can easily be moved to another directory or server. Luckily the shortest
possible URL is often the best choice.

URLs are standardized in RFC 2396. Allowed and forbidden characters as well as
characters with special meaning are of particular interest when developing Internet
applications and web sites.

3.2 HTTP
The most popular protocol for transferring documents over the WWW is the hypertext
transfer protocol, HTTP. Typically the browser connects to the web server sending
over a request for a URL, gets a response from the server and then the connection is
closed. This means that the browser has to connect to the server for every thing it
downloads, e.g. if a HTML page has 40 images the browser needs to make 1+40
separate requests to the server. Since there is no persistent connection between the
browser and the server there is no way to know if the user is looking at the web page
just sent to him, or if she continued to look at other web pages from another server.

The original intent with HTTP was to make it a "stateless" protocol, i.e. that all
requests to the server is independent, from the servers point of view. In practice that
means that each server response should only rely on the information given in that
very request. The benefit with this approach is that it becomes easier to make an

2014-03-13 Basic Concepts 11

efficient server implementation that can server web pages to any number of users,
since no information about the users or the requests needs to be stored once a
response has been transmitted.

3.2.1 Authentication

A stateless protocol has some interesting implications for authentication. As you
perhaps know it is possible for a web server to respond with an "authentication
required" response, telling the browser that it has to provide a user name and a
password in order to get the contents at the given URL. This is often referred to as a
login request. If the webserver accepts the user name and the password the browser
remembers the user name/password pair as a valid authentication for that server,
and will use them for all subsequent requests to the server. (This is an
oversimplification. Read about authentication realms in RFC 2617) As a
consequence there is, contrary to common belief, no logout mechanism. This is often
emulated by temporary rejecting the valid user name/password causing the browser
to drop the user name/password pair as valid authentication. The drawback is that
the user will be presented with a new login request that she has to cancel.

3.2.2 Cookies

Another way of overcoming the drawbacks of the stateless protocol model is cookies.
A cookie is a browser variable that can be set and altered by the server. Once set the
browser will include the cookie in all requests to the server, thus large cookies will
"waste" a lot of bandwidth. When the server sets a new value to a cookie it also gets
to decide the realm of the cookie, e.g. to which URLs the browser should send the
cookie, and an expiration date, at which time the browser automatically removes the
cookie. There is no defined method to remove a cookie, so that operation is often
simulated by setting the cookie value to an empty string and setting the expiration
time to a date that has already occurred. Some browsers remove the cookie at once
while others wait until the next time it is restarted. Read more about cookies in RFC
2109.

3.2.3 Content-Type

The URL of a resource doesn't necessarily give away the type of its contents, and
URLs were never intended to be used for that either. Hence every response from the
web server contains a content type header containing the contents "MIME type", e.g.
text/html for HTML files or image/gif for GIF files. In Roxen WebServer these MIME
types are usually derived from the file extension by the content type module, but
scripts and other modules may choose another MIME type. MIME types are handled
by IANA and a complete list of all official MIME types can be found at www.iana.org.

3.3 XML

3.3.1 Tags

XML is a way of describing how to describe things. You can think of XML as the
alphabet which you can use to create words with. Then you take these words and
actually perform the actual act of describing things. These uses of XML are often
referred to as XML applications. One of these XML applications is XHTML, which is a
markup language made for use on the WWW. E.g. if I want the word "blind" to be bold
in the sentence "Three blind mice." I would write

Three blind mice.

2014-03-13 Basic Concepts 12

The and are called tags, a start tag and an end tag. The starttag, , turns
bold on and the endtag, , turns off the bold property. The XML rules regarding
tags are fairly simple, you must turn off, or close, all tags that you have opened and
you must do it in the reverse order of how you opened them. An example with both
bold and italic in XHTML:

Three <i>blind</i> <i>mice</i>.

An empty tag <x></x> may be compressed into <x/>. This is useful for tags that
doesn't need any content to be meaningful, e.g. the line break tag
 in XHTML.

3.3.2 Attributes

Tags can be made more specific by the use of attributes, which consists of an
attribute name and an attribute value, or argument.

<b lang="en-uk">Three blind mice.

Note that either two " or two ' may be used around the argument, depending on the
contents. Example:

Did you hear that someone actually donated a pie to
<person name='William "Bill" Gates'>him</person>?

3.3.3 Entities

In addition to tags XML also specifies entities, which are used as a constant that
represents something else. It is for example forbidden to use the characters < and >
for anything else than making tags in XML. Thus there must be some other way to
write these characters when you need them, < (less than) and > (greater
than).

More information about both XML and XHTML is available at www.w3.org.

3.4 XSLT
A common application of XML is to invent XML formats of your own, where text or
other data is stored in an orderly fashion, compliant to a given vocabulary and rules
of what tag constellations are legal. Such a ruleset is called a Document Type
Definition, or DTD for short, but we will not go into greater depths about them here,
and you need not be intimately familiar with them to use the XML and XSLT features
of CMS Advanced.

XSLT, short for Extensible Stylesheet Language Transformations, is a language for
transforming XML documents into other XML documents. Or, in other words, XSLT is
a generic standardized template system that can be used to separate your data from
its layout, formatting and other aspects of presentation, so that you can change
either independent of the other.

This template system transforms the source files stored in the site repository, or the
site repository and a database, into files suitable for the browsers used. For web
browsers this most commonly means converting to XHTML, for WAP phones WML.

The transformation consists of choosing which parts of the source files will be
displayed and creating the layout necessary to display it nicely. Thus the template
system ensures a consistent look and feel of the whole site.

2014-03-13 Roxen Concepts 13

4 Roxen Concepts

Before looking into the actual features provided for static and dynamic page
generation, let's have a look at what we want to accomplish with these features. The
following list outlines four major properties in the WWW that must be implemented
on the server side to be reliable and secure.

• Connection to content generation, such as image rendering or database
retrieval.

• Interaction, such as posting information on chat boards, committing polls or
performing searches in search engines.

• Monitoring and control, such as bandwidth throttling, access control and page
access counters.

• Traffic control, such as HTTP cache settings and HTTP redirects.

Furthermore we want to be able to do content/layout separation as well as using
macro functions to shorten development time and ease maintenance. Though these
two properties do not have to be done at the server side, it is a good compromise
between letting a content generation program creating static content and relying on
the client to interpret the information correctly.

4.1.1 Scripts

Traditionally scripts have been the answer to demand for the above properties. A
script is a small program that is run when a client has requested a certain URL, and
the output from the program is then sent back to the client. The benefits are
complete control over the transaction enabling implementation of all the above
properties, but there are several drawbacks. Scripts are more expensive to handle,
since you need programmers to create programs, and it is difficult to reuse the script
code in an efficient manner.

Several types of scripts are supported by Roxen WebServer. Pike scripts are the most
efficient, since they run inside the server process itself. The second most efficient
way of using scripts is using the Extscript feature in Roxen, currently supporting Perl,
which keeps the overhead of starting a Perl interpreter low by letting several requests
use the same interpreter before it is discarded. Finally Roxen WebServer supports
the FCGI and CGI interface making it possible to run virtually any script.

4.1.2 Modules

Modules in Roxen WebServer can be considered as scripts through which all
requests passes, and it is up to the module to decide when to react on a request.
This solves both the problems with scripts, that they are not general and that they are
not as manageable. The script code can now be reused for any page that we like, e.g.
by inserting a marker into the page or by explicitly adding the page URL to that
modules configuration. The use of markers to trigger some kind of action in the
module, e.g. inclusion of certain data, also makes the web site more manageable,
since backend programmers and page designers now work on different levels.

This description of modules is an oversimplification, since there are many different
kinds of modules in Roxen WebServer, with different tasks and ways to be activated.
Read the Administrator and Programmer manual for more in-depth information.

2014-03-13 Roxen Concepts 14

4.1.3 RXML

RXML, RoXen Macro Language (it was invented before XML), is a functional,
serverside, XML compliant scripting language that easily integrates itself with web
content. Since its syntax is already familiar for many it is often very easy to learn. Its
tight integration with the XML in the pages enables the module programmer to keep
as little HTML as possible in the program code, thus leaving more creative freedom to
the web designer, i.e. a good separation between layout and functional code.

<table>
 <emit source="sql" query="select * from users">
 <tr>
 <td>&_.name;</td>
 <td>&_.email;</td>
 </tr>
 </emit>
</table>

4.1.4 In-page scripting

To "complete the circle" it should also be mentioned that it is possible to do in-page
scripting, i.e. putting functional code inside the actual web pages. This is currently
possible with Pike code and Perl code.

4.2 RXML Evaluation
RXML is an XML compliant programming language which can be used to produce
dynamic as well as static content. The core of RXML is tags and entities, but unlike
XML both tags and entity references may be expanded into dynamic values or have
serverside side-effects.

To make it easier to use RXML variables, they are grouped into scopes. You can think
of a scope as a bucket with variables. When you reference a variable, you first type
the name of the scope, then a period, and then the name of the variable. In the
example below the variable thing in the scope var is set to "Book" and the variable
thing in the scope form is set to "Chair".

<set variable='var.thing'>Book</set>
<set variable='form.thing'>Chair</set>
My &var.thing; is on the &form.thing;.

My Book is on the Chair.

In the last row of the example the two variables are inserted into the document by
writing the variable reference as an XML entity reference, i.e. inside & and ;. The
RXML parser distinguishes RXML variable entity references from ordinary XML entity
references by looking for the period.

As a rule of thumb, the content and attributes of an RXML tag are evaluated first and
the tag itself afterwards, as shown in the next example. First var.thing is set to
"Book" and then the value of var.thing is expanded in the content of the second
<set> tag so that form.thing is set to the value of var.thing, i.e. "Book".

<set variable='var.thing'>Book</set>
<set variable='form.thing'>&var.thing;</set>
My &var.thing; is on the &form.thing;

My Book is on the Book.

2014-03-13 Roxen Concepts 15

You can also use RXML variable entity references to insert values into the attributes
of tags, as shown by these two examples:

<set variable='var.variable'>var.title</set>
<set variable='&var.variable;'>Autour de la Lune</set>
Title: &var.title;

Title: Autour de la Lune

<set variable='var.variable'>title</set>
<set variable='var.&var.variable;'>Autour de la Lune</set>
Title: &var.title;

Title: Autour de la Lune

4.2.1 Evaluation order

The general evaluation order of RXML is from top to bottom of the page, and inside
and out in terms of tag levels. The "top to bottom" means that if two non-nested tags
appear on a page, the first one on the page is evaluated before the second one.

<set variable='var.value'>One</set>
&var.value;

<append variable='var.value'> Two</append>
&var.value;

One
One Two

The "inside and out" on the other hand describes how tags behave if they are nested.
Then the innermost first gets to produce its result. That result is then handed over to
the surrounding tag, which in turn produces its output with the first tags output as
input.

<case case='upper'><date part='wday' type='string' /></case>

MONDAY

4.3 URL Extensions
Since everything after the host part of the URL is sent to the server as is, after
transport encoding, the server in practice decides the meaning of that part of the
URL. Normally that part of the URL consists of a path part, containing the path to a
file the client wants, and a query part, containing variables that may affect the way
the server accomplishes the request.

http://roxen.com/products/platform/tech-features.xml?page=9

In the URL above we request the file /products/platform/tech-features.xml
from the host roxen.com with the variable page set to 9. Note that there is in
principle nothing that prevents us from making a server that returns the same result
with the following URL.

2014-03-13 Roxen Concepts 16

http://roxen.com/SELECT_page_FROM_features_WHERE_product=platform_AND_page
=9

This is however not a good idea for several reasons, usability being the number one.
Users are used to alter the URL of a page to get to index-pages higher up in the web
site structure.

4.3.1 Index pages

The most common sidestep from the rule that the path part of the URL explicitly
denotes a file is directory URLs.

http://roxen.com/products/platform/

The above URL does not denote a specific file in the /products/platform/
directory, but does instead point at the directory itself. The common approach is to
find an index file in the directory and send that file instead. This is handled by the
directory module, which by default looks for the files index.html, index.xml,
index.htm, index.pike and index.cgi in that order.

4.3.2 Path info

Sometimes it can be practical to fake a directory structure, but let all requests to the
files in that directory lead to the same file. The example with the tech-
features.xml URL above could look like this:

http://roxen.com/products/platform/tech-features.xml/9/

The part of the URL after the actual file will then be provided to the file/script in a
special variable during its parsing.

4.3.3 Prestates

When developing and debugging is a great help to be able to turn on and off specific
parts of the code that generates the current page. This is an ideal application for
prestates, a mechanism invented by Roxen to enable the user to turn certain
switches on and off. The name and function of the prestates is decided by the page
developer. One example of how prestates are used is the Table/Image Border
Unveiler module, which is used on the community.roxen.com web site.

http://community.roxen.com/(tables)/developers/

This URL signifies that we want to fetch file at the path /developers/ from the host
community.roxen.com with the protocol HTTP and with the prestate tables set. In the
WebServer the Table/Image Border Unveiler module recognizes the table prestate
and knows that the user wants all tables highlighted in the page. Compare the result
with how the page looks without the prestate. It is also possible to add several
prestates to the same page in a comma separated list, e.g.

http://community.roxen.com/(tables,images)/developers/

Prestates can of course be used for many other things than switching debugging
flags, e.g. moving states between pages like a browser window local cookie. See

2014-03-13 Roxen Concepts 17

<apre> and <if prestate> for more information about how to control and detect
prestates in your RXML applications.

4.3.4 Config states

A variation of prestates is the config state. Looks very similar to the prestates, but
stores its value in a cookie. Looking at the following URL will store the value "bacon"
in the cookie RoxenConfig, which will be valid for two years since its latest change.
After the cookie has been set, the server will redirect to the page you came from, or if
it was unable to determine what page that was, to the same URL but without the
config state.

http://community.roxen.com/<bacon>/

Removing a config state value is a little trickier than with prestates, since you can not
edit them by hand, as with the URL. Prepending a minus sign before a config state
flag indicates that it should be removed from the RoxenConfig cookie. As with
prestates it is possible to combine several states at the same time, both with and
without minus signs.

http://community.roxen.com/<egg,-bacon>/

See <aconf> and <if config> for more information about how to control and
detect config states in your RXML applications.

2014-03-13 RXML Variables and Entities 18

5 RXML Variables and Entities

An RXML variable is a binding of a value to a variable name in a scope. Values are
usually strings, but can also be numbers or more complex data types – see the next
chapter. Most variables may change values during the RXML evaluation.

A variable reference is usually written as scope.variable, i.e. the name of the
scope, followed by a period, followed by the name of the variable. Depending on the
value in a variable, further periods can be used after the variable name to index
specific parts of the value. More on this in section 7.4 Subindexing.

A variable entity reference, or often just entity for short, is when the value of a
variable is inserted into attributes or contents of XML elements using the XML entity
reference syntax. For example, to insert the value of the variable var.name, write
&var.name;. This works for all XML elements, regardless whether they are RXML
tags that get evaluated or ordinary XML/HTML elements that are otherwise sent as-is
to the client.

Here are a couple small examples showing the use of RXML variables:

RXML Result

<set variable="var.foo" value="bar"/>
&var.foo;

"bar"

<set variable="var" scope="form"
value="bar"/>
&form.bar;

"bar"

<if variable="var.foo = bar">gazonk</if> "gazonk" if var.foo is equal
to "bar".

<if match="&var.foo; = *test">gazonk</if> "gazonk" if the string in
var.foo ends with "test".

Variable are grouped into scopes, and each scope typically covers a specific source.
There is e.g. one scope client for information about the browser client, and another
scope page with info about the current page on the server. You can get a list of
variables belonging to a scope by using this RXML snippet:

<pre>
 <insert variables="full" scope="page"/>
</pre>

5.1 Quoting variable references
Since periods have special meaning in variable references (be it variable entity
references or not), a quoting rule is necessary to access variables whose names
contain periods. This is done by writing each period in a name as two periods after
each other.

For example, suppose you have a graphical submit button like this:

<input type="image" name="button" src="button.gif"/>

2014-03-13 RXML Variables and Entities 19

Here the browser will submit two form variables with the names button.x and
button.y. You can access those variables as follows:

<if variable="form.button..x">
 You pressed on the coordinate &form.button..x;,&form.button..y;.
</if>

5.2 Scopes
The most common scopes that handle variables are the var and form scopes. The
var scope is always empty when the page parsing begins and is intended for internal
variables that you need in your RXML code. The form scope contains all returned
query variables from forms etc.

The other standard scopes are:

client Information about the browser, e.g. the User-Agent string.

cookie All cookies sent by the client.

page Information about the page being RXML evaluated, e.g. its
path.

request-header All request headers sent by the client.

roxen Information about the Roxen server.

user Information about the authenticated user. This scope is only
available in Roxen CMS.

See the web manual for details about these scopes.

Some RXML tags also define scopes that only exist inside them. Most important is
the <emit> tag, which is used to iterate over information from some source.

Usually these so-called tag scopes get the same name as the emit source. E.g. the
sql source, which lets you query an SQL database and process results from it,
defines by default a scope sql which contains the values retrieved from the
database. If several surrounding tags define scopes with the same name, then only
the innermost scope with that name is accessible.

Usually there is a way to change the name of a tag scope, to allow you to access
scopes that would otherwise be hidden. The <emit> tag takes a scope="…" attribute
for that purpose. You can also always refer to the innermost, i.e. current, tag scope
with _ (underscore). Here is an example that shows both scope renaming and the use
of _ to access the current scope:

<emit source="sql" query=" ... " scope="outer">
 &_.name; is the same as &outer.name;
 <emit source="sql" query=" ... " scope="inner">
 &_.name; is the same as &inner.name; but different from &outer.name;
 </emit>
</emit>

5.3 Attribute splicing
If you want to set arbitrary attributes on XML elements, you can use the special splice
attribute ::. The value of that attribute is inserted directly into the attribute list, and
it should therefore contain a sequence of attribute="value" pairs. An example:

2014-03-13 RXML Variables and Entities 20

<set variable="var.form-attrs">
 method="POST" enctype="multipart/form-data"
</set>
<form action="query.xml" ::="&var.form-attrs;">...</form>

This will generate this output:

<form action="query.xml" method="POST" enctype="multipart/form-
data">...</form>

The reason why the splice attribute is necessary here is that XML entity references
cannot be used directly in an attribute context. I.e. this is invalid XML:

<form action="query.xml" &var.form-attrs;>...</form>

The splice attribute works both for RXML evaluated tags and other tags that are sent
directly to the client. Note that it does introduce a certain amount of overhead in
compiled RXML code, so use it only when necessary.

2014-03-13 RXML Variable Entity Encoding and Decoding 21

6 RXML Variable Entity Encoding and
Decoding

When an RXML variable is accessed as an entity (e.g. &var.foo;) in an XML/HTML
context, it is by default HTML encoded, i.e. < is inserted as <, > as > and & as
&. However, there are situations when that is not what you want, e.g. when
inserting entities into SQL queries. Therefore, the encoding can be controlled by
applying a different encoding scheme on the entity, &scope.entity:scheme;.

<sqlquery query="SELECT * FROM db WHERE name='&form.name:mysql;'">

It is also possible to combine several encoding schemes by separating them with . (a
period). To e.g. UTF-8 encode and then URL encode with %XX escapes, write
&var.foo:utf8.url;.

Several of the encodings can be reversed by applying the encoding prefixed with
minus. For instance, &var.foo:base64; produces BASE64-enoded data and
&var.foo:-base64; will decode same BASE64 input back to the original string.

Here is a list of all available encoding and decoding schemes:

none

No quoting. This can potentially be dangerous if the value of the variable comes
from an outside source in one way or the other. It should not be used unless you
have total control of the content of the variable.

html

This is the default quoting, for inserting into regular HTML or XML, e.g. & is
encoded to &.

Encoded characters: NUL < > & " '

-html

Decodes HTML markup including alphabetical and numerical (decimal or
hexadecimal) entities. Be very careful in how the resulting data is handled in web
pages since this may open up to code injection attacks.

http

HTTP encoding (i.e. using %XX style escapes) of characters that can never occur
verbatim in URLs. Other URL-special chars, including %, & and ?, are not encoded.

Encoded characters are all control chars and additionally these:
SPACE : / ? # [] @ ! $ & ' () * + , ; = " % < > \ ^ ` { | }

8-bit and wider chars are first UTF-8 encoded followed by %XX escaping, according
to the IRI standard (see RFC 3987).

url

An extended variant of the http encoding scheme that encodes all URI reserved
and excluded chars which otherwise could have special meaning; see RFC 3986.
This includes characters such as % / : " '.

cookie

2014-03-13 RXML Variable Entity Encoding and Decoding 22

Nonstandard http-style encoding for cookie values. The Roxen HTTP protocol
module automatically decodes incoming cookies using this encoding, so by using
this for Set-Cookie headers etc you will get back the original value in the cookie
scope. Note that the RXML <set-cookie> tag already does this encoding for you.

Encoded characters are all control chars and additionally these:
= , ; %

pike

Pike string quoting, for use in e.g. the <pike> tag. This means backslash escapes
for chars that cannot occur verbatim in Pike string literals.

Encoded characters: LF \ "

js or javascript

Javascript quoting using backslash escapes, for use in Javascript string literals.

Encoded characters: BS HT FF CR LF \ " '
U+2028 (Unicode LINE SEPARATOR)
U+2029 (Unicode PARAGRAPH SEPARATOR)

Additionally, for safe use inside <script> elements, it quotes a couple more
character sequences:

• </ is quoted as <\/ according to appendix B.3.2 in the HTML 4.01 spec.

• <!-- is quoted as <\!-- according to 4.3.1.2 in the HTML 5 spec.

Both are harmless in Javascript string literals in other contexts.

json

JSON quoting with backslash escapes, for use in JSON string literals. It quotes all
characters that need quoting according to RFC 4627.

It also quotes Unicode LINE SEPARATOR and PARAGRAPH SEPARATOR characters.
That is not strictly necessary in JSON, but it improves compatibility with many
JSON parsers that are implemented in Javascript.

Encoded characters: \ "
All control characters in the range U+0000 – U+0019
U+2028 (Unicode LINE SEPARATOR)
U+2029 (Unicode PARAGRAPH SEPARATOR)

mysql

MySQL string quoting using backslash escapes, for use in MySQL SQL queries.

In Roxen 5.1 and later, the single quote character ' is quoted as '' (two single
quotes) according to standard SQL quoting rules. That is compatible with MySQL,
and it avoids potential security problems with SQL injection if this encoding is
incorrectly used with other databases.

Encoded characters: " ' \

sql or oracle

For inserting into SQL queries: The single quote character ' is doubled to '' (i.e.
two single quote characters).

WARNING: Do not use this encoding with MySQL as it might open up for security
issues through SQL injection.

hex

2014-03-13 RXML Variable Entity Encoding and Decoding 23

Hexadecimal encoding. Requires octet (i.e. non-wide) strings.

<set variable="var.test" value="Hello World!"/>
&var.test:hex;

48656c6c6f20576f726c6421

-hex

Hexadecimal decoding.

<set variable="var.test" value="48656c6c6f20576f726c6421"/>
&var.test:-hex;

Hello World!

utf8 or utf-8

UTF-8 encoding.

-utf8 or -utf-8

UTF-8 decoding.

utf16 or utf16be

Big endian UTF-16 encoding.

<set variable="var.test" value="ሴ"/>
&var.test:utf16.hex;

1234

utf16le

Little endian UTF-16 encoding.

<set variable="var.test" value="ሴ"/>
&var.test:utf16le.hex;

3412

base64 or base-64 or b64

Base-64 MIME encoding. Requires octet (i.e. non-wide) strings.

-base64 or -base-64 or -b64

Base-64 MIME decoding.

quotedprintable or quoted-printable or qp

Quoted-Printable MIME encoding. Requires octet (i.e. non-wide) strings.

md5 or sha1 or sha256

Returns the hash of the variable value using the given algorithm. Note that this is
not defined for wide strings so normal usage is to chain with a encoding first, and
possibly with a hex formatting at the end:

<set variable="var.test" value="Hello World!"/>
&var.test:utf8.md5.hex;

2014-03-13 RXML Variable Entity Encoding and Decoding 24

ed076287532e86365e841e92bfc50d8c

There are also some obsolete and deprecated encoding schemes, listed only for
completeness:

The empty string

This means you write nothing after the colon, e.g. &var.foo:;. It works as an
alias for none.

wml

Extended version of the html encoding that additionally encodes all $ to $$.

wml-url

Alias for url.

dtag

stag

The dtag scheme encodes a double quote " into the sequence "'"'", and stag
encodes a single quote ' into '"'"'. (These were useful in attributes in RXML
before Roxen 2.0.)

mysql-pike

Equivalent to the combination mysql.pike.

mysql-dtag

sql-dtag

oracle-dtag

These are equivalent to the combinations mysql.dtag, sql.dtag and
oracle.dtag, respectively.

2014-03-13 RXML Type System 25

7 RXML Type System

RXML is usually used in XML (or HTML) documents to do things with simple strings or
numeric values. In that case the underlying type system is hardly exposed, and you
can usually cope quite well without a thorough understanding of it. There is however
more power under the hood, and when you start doing more advanced things it is
useful to get some concepts sorted out. That is what this chapter is about.

7.1 Context sensitivity
All RXML tags and variable values are context sensitive – where ever they occur there
is a context which has a type, and the tags or variable values can potentially produce
different results based on that type.

For example, the normal top level type in a page is text/html. When a variable with
a string value is inserted through a variable entity reference, RXML converts the
string to the text/html context by encoding the XML markup characters < > & "
'. That is why a form like the following behaves well even if a user tries to play tricks
by submitting something like "'/><blink>I make you blink!":

<form action='&page.self;'>
 <p>You sent: &form.text;</p>
 <input type='string' name='text'
 value='&form.text;'/>
 <input type='submit' name='send'/>
</form>

Generated page output:

<form action='myform.html'>
 <p>You sent: '/><blink>I make you blink!</p>
 <input type='string' name='text'
 value=''/><blink>I make you blink!'/>
 <input type='submit' name='send'/>
</form>

If the context was not text/html or text/xml then that conversion would not
happen. E.g. the <set> tag uses the most generic type any for its content. That type
accepts any value without conversion, which means the value gets assigned to the
variable verbatim, regardless of what it is. In the following snippet we set var.y to a
five char string with the tricky characters < > & " ', without any encoding
occurring:

<set variable='var.x'><![CDATA[<>&"']]></set>
<set variable='var.y'>&var.x;</set>
<debug showvar='var.y'/>
<if sizeof='var.y = 5'>It is 5 chars.</if>

"<>&\"'"
It is 5 chars.

Here we use <debug showvar> to take a peek on what the variable "really is". It
prints the variable using Pike notation, which means the string is printed in double
quotes with Pike/C/C++/Java/Javascript style backslash escapes. Then the result is
XML encoded, so "<&>\"'" is what you actually see in your browser. This way of

2014-03-13 RXML Type System 26

showing the value usually makes it very clear what it actually contains. Still, just for
good measure we also use an <if> test to check that the string really is five chars
long.

7.1.1 Type propagation

Many RXML tags propagate the results of their contents unmodified to their
surrounding contexts, e.g. <if>, <else> and <emit>. All such tags also first
propagate the types of their surrounding contexts inwards to their own contents. That
way you can use them in any context without hassle. In the following example, the
<if> inside the <set> takes the any type from the <set> tag and propagates it to its
contents, so &var.x; is expanded in an any context, just like in the last example in
the previous section:

<set variable='var.x'><![CDATA[<>&"']]></set>
<set variable='var.y'>
 <if sizeof='var.x = 5'>
 &var.x;
 </if>
</set>
<debug showvar='var.y'/>

"<>&\"'"

Note in the example above that there is plenty of whitespace in the <set> and <if>
tags to make the code nicely indented, yet it has no effect on the value assigned to
var.y. That is another aspect of the typed contexts: Certain types, like any, ignore
most literal whitespace and comments, while others, e.g. text/xml and text/html,
does not. See section 7.3.1 for further details.

7.1.2 Tags without results

There are also some RXML tags that produce no results at all, e.g. the <set> and
<nooutput> tags. Such tags have the result type nil, which allows them to occur in
contexts of any type.

7.2 Sequential and non-sequential types
A fundamental difference between types is whether they are sequential or not.
Basically, a sequential type is one where it makes sense to concatenate several
values together. Any sort of string type is sequential – that allows RXML to paste
together the many RXML tag results and the literal pieces of the page to send the
completed page as a single string to the client. The two container types array and
mapping are also sequential; see section 7.7.

Other types are not sequential. For e.g. integers it does not make much sense to
concatenate the two numbers 1 and 2 together to 12 – although possible it is simply
not useful1.

1 Implementing concatenation as some other operation, such as addition, is not
useful either. Intuitively it would just be obscure, but in more strict mathematical
terms it would make the parsing process non-homomorphic – see the doc comment
for RXML.Type.sequential in the WebServer sources for further details.

2014-03-13 RXML Type System 27

7.2.1 Non-sequential type any

The generic type any is not sequential since it must allow values of any type, both
sequential and not. That is why the <set> tag gives the following error which most
RXML coders come across sooner or later:

<set variable='var.user'>Ann</set>
<set variable='var.greeting'>Hello, &var.user;</set>
&var.greeting;

RXML parse error: Cannot append another value "Ann" to non-sequential type
any.
 | <set variable="var.greeting">

The first <set> tag works because it only contains a single literal string "Ann". In the
second <set> tag however, the result first gets the value "Hello,", which is converted
to the type any. Then it complains because the any type cannot append the second
value "Ann". The solution is to tell the <set> tag to use a sequential type which
specifies how the concatenation should be done:

<set variable='var.user'>Ann</set>
<set variable='var.greeting' type='text/*'>Hello, &var.user;</set>
&var.greeting;

Hello, Ann

7.2.2 Sequential type array

The array type is sequential, and its values can be anything. It can therefore be
thought of as a sequential counterpart to any, which collects the values in a
vector/array:

<set variable='var.user'>Ann</set>
<set variable='var.greeting' type='array'>Hello, &var.user;</set>
<debug showvar='var.greeting'/>

({ /* 2 elements */
 "Hello,",
 "Ann"
})

In the example above, we can see that the two values "Hello," and "Ann" were
collected as two separate elements in an array. The <debug> tag then printed it out
using Pike notation, i.e. inside ({ and }), and with the elements separated by
commas (the comment "/* 2 elements */", the line breaks, and the indentation
are just for readability and are not significant).

7.3 Parsing rules
Types differ in their handling of whitespace (including XML comments), plain text
literals, and unparsed (i.e. non-RXML) tags and processing instructions.

7.3.1 Ignoring comments and whitespace

For so-called free text types, i.e. text/html, text/plain and all the others starting
with "text/", all whitespace, comments, and literal text is significant:

2014-03-13 RXML Type System 28

<set variable='var.greeting' type='text/*'>
 <!-- Show the greeting -->
 <if variable='var.user'>
 Hello there, &var.user;!
 </if>
</set>
<debug showvar='var.greeting'/>

"\n"
" <!-- Show the greeting -->\n"
" \n"
" Hello there, Ann!\n"
" \n"

Notice the leftovers from the <if> tag indentation etc. Since text/html is the
normal top level type, this is the behavior you will usually get.

When you are programming it is however often convenient to use whitespace and
comments in your code without affecting the output, so you want the parser to ignore
such things. All other types do that. E.g. if we switch to string in the example above,
the result gets much shorter:

<set variable='var.greeting' type='string'>
 <!-- Show the greeting -->
 <if variable='var.user'>
 Hello there, &var.user;!
 </if>
</set>
<debug showvar='var.greeting'/>

"Hello there,Ann!"

The comment and all separating whitespace is gone. For literal text, all the leading
and trailing whitespace is trimmed away, but internal whitespace is kept (e.g. the
space in "Hello there,").

Notice how the whitespace before &var.user; is trimmed away too. That is because
it is a variable entity which separate two text nodes, "\n Hello there, " and
"!\n ", each of which is trimmed separately. In cases like that it is probably more
convenient to use a free text type to keep such whitespace separation intact, and you
can use the <value> tag to switch to text/* only for that bit:

<set variable='var.greeting'>
 <!-- Show the greeting -->
 <if variable='var.user'>
 <value type='text/*'>Hello there, &var.user;!</value>
 </if>
</set>
<debug showvar='var.greeting'/>

"Hello there, Ann!"

Due to the <value> tag, there is no longer any need to specify a type for the <set>
tag; the default any type will do just fine (unless you later find that you want to
concatenate several values – see section 7.2.1).

7.3.2 Literal text

Apart from the free text types, there are several types that accept plain text literals, in
particular the string type which is shown in several examples in the previous
section.

2014-03-13 RXML Type System 29

The any type accepts arbitrary text literals just like string does. Other types, notably
int and float, try to parse them as numbers or according to some other syntax –
see the sections on the respective type for details.

The remaining types do not handle literals at all. For them you have to produce the
values using other tags, e.g. from <emit> sources or by using <substring>, <set …
split="…">, or in particular the <value> tag:

<set variable='var.arr' type='array'>
 <value>abc</value>
 <value type='int'>17</value>
 <value type='float'>3.14</value>
</set>
<debug showvar='var.arr'/>

({ /* 3 elements */ "abc", 17, 3.14})

The example above also shows how int and float parse literals as numbers. They
will throw parse errors if the literals do not conform to the numeric syntax.

7.3.3 Handling of unparsed tags and PIs

RXML usually works by detecting certain tags, specially formatted entity references,
and a few processing instructions. The rest, i.e. from the RXML point of view
unparsed tags and processing instructions, is let through untouched. This is also
controlled by the types, and it is only the free text types (i.e. those beginning with
"text/") that accept unparsed tags and PIs, although they do it in different ways –
see section 7.5.

All other types require RXML parsed tags and PIs, and they must also produce results
of the right types. This gives better error detection in case tags are misspelled or the
right tag modules aren't loaded.

<set variable='var.greeting'>
 <if variable='var.user'>
 <p>Hello there, &var.user;!</p>
 </if>
</set>
<debug showvar='var.greeting'/>

RXML parse error: Unknown tag "p" is not allowed in context of type any.
 | <if variable="var.user">
 | <set variable="var.greeting">

If you want to write tags and PIs as ordinary text in a string or any context, you
must quote them using < or <![CDATA[…]]> blocks, but it is probably better to
use a <value> tag to switch to a text/* context, like in the last example in section
7.3.1:

<set variable='var.greeting'>
 <if variable='var.user'>
 <value type='text/*'><p>Hello there, &var.user;!</p></value>
 </if>
</set>
<debug showvar='var.greeting'/>

"<p>Hello there, Ann!</p>"

2014-03-13 RXML Type System 30

7.4 Subindexing
For values of some types, it is possible to pick out smaller parts using subindexing.
This is done by following the variable name with a period and the subindex, similar to
how the scope is followed by a period and the variable name.

7.4.1 Indexing arrays

Subindexing is mainly used with the container types. For example, assume var.arr
contains the array value ({"1", ({"2a", "2b"})}):

<set variable='var.arr' type='array'>
 <value>1</value>
 <value type='array'>
 <value>2a</value>
 <value>2b</value>
 </value>
</set>

First element: <debug showvar='var.arr.1'/>
Second element: <debug showvar='var.arr.2'/>
First element in the second element: <debug showvar='var.arr.2.1'/>

First element: "1"
Second element: ({ /* 2 elements */ "2a", "2b"})
First element in the second element: "2a"

Notice how subindexing can continue in more than one step. The timerange source
to the <emit> tag uses this extensively with special "intelligent" values to do date
and time arithmetic in a convenient way.

Use negative values to index from the end in an array. Given the same value in
var.arr as above:

Last element: <debug showvar='var.arr.-1'/>
Second last element: <debug showvar='var.arr.-2'/>

Last element: ({ /* 2 elements */ "2a", "2b"})
Second last element: "1"

It is an error to index beyond the end of an array, or beyond the beginning when using
negative indices.

7.4.2 Indexing scalar values

Scalar values (i.e. strings, text, integers and floating point numbers) cannot be
indexed2. Even so, as a convenience they produce themselves when indexed with
either 1 or -1. This is useful in cases where you do not know and do not really care if
a variable is a sequence of values or just a single value, typically when handling form
variables that might have been sent multiple times.

For example, if your page contains a variable entity as follows and the request is
http://myserver.com/sizes/?size=12, then it works fine:

Size: &form.size;

2 To pick out characters or pieces of strings, use a string manipulation tag, such as
the <substring> tag.

2014-03-13 RXML Type System 31

Size: 12

But if the request becomes http://myserver.com/sizes/?size=12&size=0 for
some reason, then the value will be an array ({"12", "0"}) and you get an odd
value with a NUL inside it (due to special magic in the form scope – see its reference
in the web-based manual for details):

Size: &form.size;

Size: 12�0

In all scopes except the form scope, you will likely get an error instead, since an array
cannot be inserted directly into the page.

If you instead use a subindex 1, you will in both cases get a single value from the
form variable:

Size: &form.size.1;

Size: 12

7.4.3 Indexing scopes and mappings

Mappings and scopes are indexed in much the same way. Indices can be either
numbers or strings. If the index does not match the name of any member then you
will get an undefined value (RXML.nil – c.f. section 7.5.2), which in most contexts is
transformed to an empty value that does not affect the result at all. If you continue to
subindex the undefined value, you will get an error (unless you index it with 1 or -1;
see the previous section).

7.5 Special types and values

7.5.1 any

The any type is a completely unspecified non-sequential type. Every type is a subtype
of this one.

This type is also special in that any value can be converted to and from this type
without the value getting changed in any way (provided it's representable in the
target type), which means that the meaning of a value might change when this type is
used as a middle step.

E.g. if "<foo>" of type text/* is converted directly to text/xml, it is quoted to
"<foo>" since text/* always is literal text. However, if it first is converted to
any and then to text/xml, it still remains "<foo>", which then carries a totally
different meaning.

7.5.2 nil

There is both a type ni l and a nil value, which most often shows up as RXML.nil in
error messages and similar.

The value RXML.nil is a bit of a contradiction since it means no value at all, i.e. it is
used as a marker to indicate the lack of a value. E.g. assigning RXML.nil to a
variable (only possible from Pike) is the same as removing the variable binding.

2014-03-13 RXML Type System 32

Correspondingly, the type nil is a type that accepts no value at all (not even the
empty value of some type). This type is a subtype of every other type since all the
RXML evaluation functions may return no value (i.e. RXML.nil) regardless of the
expected type.

7.5.3 The empty value

RXML has a special object that represent the empty value of any type which has such
a thing, i.e. "" for strings and text, 0 for integers, an array with zero elements for
arrays, etc. It is normally not visible from RXML, but it might show up in error
messages etc as RXML.empty.

7.6 String types
All string types are sequential. They are used both for text and binary data.

When strings contain text, they will ideally contain Unicode strings. That is an abstract
representation, without any charset or transmission encoding. I.e. you can view
strings as a sequence of Unicode code points, and each character can be up to 32
bits wide. File system modules, RXML tags and the http protocol module in
WebServer try to handle the charset issues for you so that the RXML evaluation takes
place in the Unicode domain. But you can still use other charsets and control charset
aspects in a variety of ways, e.g. with the <charset> and <recode> tags.

7.6.1 String values

In RXML, all string values are using the same string type internally. In other words,
when you have a string in a variable then the type is not carried with it.

E.g. in the following case, you might think that you declare var.greeting to contain
a text/html string, and hence it should not be quoted when inserted into the
text/html context of the page.

<set variable='var.greeting' type='text/html'>
 <h1>Hello, my friend!</h1>
</set>
&var.greeting;

Generated output:

<h1>Hello, my friend!</h1>

Alas, that is not what happens. What the type='text/html' attribute actually did
was only to tell the <set> tag that the content is text/html. After parsing it
according to that type, the resulting string value is assigned to var.greeting. Then
it is just a string like any other, and RXML will by default encode it safely before
inserting it into the text/html context. You can use the <value> tag to type the
value when you use it:

<set variable='var.greeting' type='text/html'>
 <h1>Hello, my friend!</h1>
</set>
<value type='text/html' from="var.greeting"/>

Generated output:

2014-03-13 RXML Type System 33

<h1>Hello, my friend!</h1>

Now RXML is aware that a text/html value is being inserted, and skips the
encoding. Of course, you can just as well override the default encoding with
&var.greeting:none;.

7.6.2 string

This is the generic type for strings. As opposed to the text types in the two following
sections, string does not allow free text, only literals; see section 7.3.

String conversions to and from this type works just like for text/* – see the next
section for further details.

7.6.3 text/plain and text/*

These types are for plain or unspecified text. They are free text types, which means
that all characters are significant, including whitespace and comments; see section
7.3.1 for details.

XML markup for quoting in the literal content, i.e. known character entity references
such as <, & and ö and <![CDATA[…]]> blocks, are converted to
their unquoted values for these types. Other XML markup such as comments, tags,
processing instructions, and entity references are not significant and hence parsed
as any other text. That means you lose information in the parsing step. E.g. in the
following example, there is no way to tell the difference between the
 tag and
the plain string after it when the value has been parsed as text:

<set variable='var.text' type='text/plain'>

</set>
<debug showvar='var.text'/>

"

"

text/plain is intended to be used for text that is actually known to be plain text,
while text/* is intended for all other text when the internal format is unknown.

In more concrete terms, the difference between the lies in how conversions to/from
the other text types are done:

From To Result

text/plain text/xml or
text/html

XML markup chars like < > & get quoted.

text/xml
or
text/html

text/plain XML quoting like &, < and <![CDATA[…]]>
blocks get decoded.

text/* or
str ing

any type No change of the value.

any type text/* or
str ing

No change of the value.

What this means is that you get encoding/decoding as can be expected for the
text/plain type, whereas text/* is similar to the any type in that the value
doesn't change, which means that its meaning might change (see 7.5.1 for more
details and an example).

2014-03-13 RXML Type System 34

7.6.4 text/xml and text/html

These two types are for XML data. On the RXML level there is no difference between
them. text/html is the default top level type in the RXML parser.

7.7 Numeric types
The two numeric types int and float are non-sequential. There is also a number
type which is a supertype for both. It is mostly useful when writing RXML tags, for
attributes that accept both kinds of numbers.

7.7.1 int

The type for integers. RXML, like Pike, handles arbitrarily large integers.

When integers are parsed from string literals, they must be a string of decimal digits,
optionally prepended by a minus sign.

7.7.2 float

The type for floating point numbers. The precision of these depend on the
architecture (and – for advanced users – how Pike has been compiled); they are 32
bits long on 32 bit architectures, and 64 bits on 64 bit computers.

Floating point numbers are parsed and printed on this format:

[+/-]nnnn.fffff[e/E][+/-]eee

where nnnn is the integer part, fffff the fraction, and eee the exponent, all on decimal
form.

7.8 Container types
Container types can hold any number of values, where each value can be of any type.
As opposed to the string and numeric types, these cannot be directly inserted into
text contexts – you must use subindexing to pick out specific parts in that case (see
section 7.4).

The <value> tag is useful to create values of these types; see the sections below for
examples. Some tags return arrays or mappings when they are used in a non-string
context. For example, the <substring> tag can return an array of substrings:

<set variable='var.list' type='array'>
 <substring separator=',' trimwhites=''>
 a, , b:c, d::e: f
 </substring>
</set>
<debug showvar='var.list'/>

({ /* 4 elements */ "a", "", "b:c", "d::e: f"})

Another example is <insert source="variables"> which returns a scope as a
mapping if it is used in a non-string context. That can be useful to collect results from
an <emit> into an array of mappings:

<set variable='var.res' type='array'>
 <emit source="dir" directory=".">
 <insert source="variables" scope="_"/>
 </emit>

2014-03-13 RXML Type System 35

</set>
<debug showvar='var.res'/>

({ /* 5 elements */
 ([/* 24 elements */
 "atime": "2008-10-26",
 "atime-iso": "2008-10-26",
 "atime-unix": 1225013411,
 "counter": 1,
 "dirname": "/",
 "filename": "test.html",
 …
]),
 ([/* 24 elements */
 "atime": "2008-04-26",
 …
]),
 …
})

7.8.1 array

An array is an ordered sequence of zero or more elements. They naturally occur for
variables in the form scope since a form variable might occur more than one time
and hence might get more than one value.

When arrays are printed for debugging or in error messages, they are shown in Pike
syntax. That means a starting ({ followed by the elements in ascending order
separated by , and then }) at the end.

Arrays are usually built using the <value> tag, e.g.:

<set variable='var.arr' type='array'>
 <value>apple</value>
 <value>orange</value>
 <value>banana</value>
</set>
<debug showvar='var.arr'/>

({ /* 3 elements */ "apple", "orange", "banana"})

(The C-style comment /* 3 elements */ is something that the <debug> tag adds
for convenience. It is not significant.)

The <value> tag takes a type attribute to set the type of its content, just like e.g.
<set>. That can be useful to build arrays inside arrays:

<set variable='var.arr' type='array'>
 <value>1</value>
 <value type='array'>
 <value>1.1</value>
 <value>1.2</value>
 </value>
 <value>2</value>
</set>
<debug showvar='var.arr'/>

({ /* 3 elements */ "1", ({ /* 2 elements */ "1.1", "1.2"}), "2"})

Note that a variable with an array value is normally spliced into an array context. Here
too an extra <value> tag is useful to make it a nested array:

<set variable='var.x' split=','>a,b</set> <!-- ({"a", "b"}) -->
<set variable='var.arr' type="array">
 <!-- Insert all the elements in var.x -->
 &var.x;

2014-03-13 RXML Type System 36

 <!-- Compare to the following that adds the var.x array as a
 single element. -->
 <value>&var.x;</value>
</set>
<debug showvar='var.arr'/>

({ /* 3 elements */ "a", "b", ({ /* 2 elements */ "a", "b"})})

7.8.2 mapping

A mapping is a hash table that contains a set of entries where each maps an index to
a value. Both indices and values may be of any type, but indices are usually strings.

Like arrays, mappings are shown in Pike syntax in error messages etc. The format is:

([index1: value1, index2: value2, …])

where each indexn is mapped to the following valuen.

Mappings can be created with the <value> tag by using the index attribute:

<set variable='var.map' type='mapping'>
 <value index='1'>first</value>
 <value index='2'>second</value>
 <value index='3'>third</value>
</set>
<debug showvar='var.map'/>

([/* 3 elements */ "1": "first", "2": "second", "3": "third"])

2014-03-13 Managing templates in a Basic site 37

8 Managing templates in a Basic site

The layout in the Basic site included in Roxen CMS is controlled by XSLT templates.
The templates translate the high-level XML markup in the pages into HTML which the
web browser can display.

You can customize the layout by changing e.g. fonts, colors, background patterns,
borders, margins and so on. It is also possible to make more complex changes
involving, among other things, the site navigation and the news archive view. You can
choose between altering parameters in the existing layout, extend the factory-
installed stylesheets, write new stylesheets from scratch, or use a combination of all
methods.

8.1 Factory-installed template files
The templates are shipped as read-only files which cannot be edited directly. This is
done to make future server upgrades easier since it would be complex to add new
components if the files have been edited in customer installations. However, thanks
to the architecture of Roxen CMS you can override a single template definition or a
complete file by copying the factory-provided files into a writeable directory and then
apply your changes.

Fine-tuning the font parameters and some of the graphics is even easier. This can be
accomplished without writing a single line of XSLT code, instead making your
selections in a user-friendly customization wizard.

To access the templates, enter the SiteBuilder editing interface by going to the URL
http://my-server/edit/. The read-only directory with factory templates and
graphics is named /roxen-files. Inside this directory there are a number of
subdirectories with a prefix of either i- or cms-. We will only cover the cms- directories
in this chapter; the i- directories are used by CMS Instant and not covered in this
chapter.

In addition to the read-only files there are a handful of templates in the root directory
of the Basic site. They inherit all the necessary read-only templates from the /roxen-
files/ directory in the following order:

 /cms-common.xsl
 |
 +-> /cms-components.xsl
 | |
 | +-> /roxen-files/cms-sites/4.5/strings.xsl
 | |
 | +-> /roxen-files/cms-sites/4.5/params.xsl
 | |
 | +-> /roxen-files/cms-sites/4.5/applications.xsl
 | | |
 | | +-> /roxen-files/cms-sites/4.5/components.xsl
 | | | |
 | | | +-> /roxen-files/cms-sites/4.5/
 | | | | fallback.xsl
 | | | |
 | | | +-> /roxen-files/cms-sites/4.5/
 | | | | components/header-comp.xsl
 | | | |
 | | | +-> /roxen-files/cms-sites/4.5/
 | | | | components/footer-comp.xsl
 | | | |
 | | | +-> ...plus all other factory-installed components

2014-03-13 Managing templates in a Basic site 38

 | | |
 | | +-> /roxen-files/cms-sites/4.5/
 | | | forum/forum.xsl
 | | |
 | | +-> /roxen-files/cms-sites/4.5/
 | | | booking/booking.xsl
 | | |
 | | +-> /roxen-files/cms-sites/4.5/
 | | poll/poll.xsl
 | |
 | +-> /roxen-files/cms-sites/4.5/css/base.xsl
 | | |
 | | + > /roxen-files/cms-sites/4.5/css/common.xsl
 | | |
 | | + > /roxen-files/cms-sites/4.5/css/screen.xsl
 | | |
 | | + > /roxen-files/cms-sites/4.5/css/print.xsl
 | | |
 | | + > /roxen-files/cms-sites/4.5/css/handheld.xsl
 | | |
 | | + > /roxen-files/cms-sites/4.5/css/components.xsl
 | |
 | +-> your custom templates
 |
 +-> /roxen-files/cms-sites/4.5/page-layout.xsl
 |
 +-> /roxen-files/cms-sites/4.5/navigation.xsl
 |
 +-> /roxen-files/cms-sites/4.5/
 navigation-xml-tree.xsl
 /cms-print.xsl
 |
 +-> /cms-common.xsl
 |
 +-> see above

All XML files which are generated by the component editor will get cms-common.xsl
as their template. Note however that when you are working inside the component
editor the system will apply cms-components.xsl instead in order to temporarily
hide the navigation interface. (Component Editor can be configured to use a different
template, see Advanced control of the component editor.) This means that custom
components must not be imported directly into cms-common.xsl since they would
then become unavailable to the editor.

The cms-print.xsl template is only applied temporarily to a page when a printer
friendly layout is requested.

8.1.1 Navigation menus

Code for producing web page navigation is contained in two template files,
navigation.xsl and navigation-xml-tree.xml in the /roxen-files/cms-
sites/4.5/ directory. The latter template constructs an internal representation of
the navigation structure where menu entries are placed in a tree based on the
contents of menu files, directory structure, current page and other properties. This
tree is then passed to the layout code in the first navigation template for styling. By
dividing the code in two parts you can easily replace the presentation logic while
preserving the generation of the tree.

8.1.2 CSS styles

The files in /roxen-files/cms-sites/4.5/css/ contain CSS styles controlling the
page layout. Styles specific to a component resides in the XSL template for the
component. These component styles are then called from /roxen-files/cms-
sites/4.5/css/components.xsl.

2014-03-13 Managing templates in a Basic site 39

8.1.3 External visibility

All factory template files have their external visibility metadata set to never as
indicated by the eye icon in the file browser. The reason for this is to prevent site
visitors from downloading the source code to the templates. The stationery file for
new XSLT templates has been configured in the same way.

8.2 Customizing template parameters
Many of the XSLT templates have predefined parameters which can be changed
using the command Customize Template in the Edit popup menu. Since parameter
customization is inherited through <xsl:import> statements you should select
Customize Template on the /cms-components.xsl file to change settings for any of
its imports, including the read-only files.

You will find that there are parameters for controlling font colors, font names, page
colors, margins, component spacing, header logo file, image directory path and more.
If you change a parameter you also need to check the Override Imported check box
next to the parameter or else the new value will not take effect over the inherited
template's default value.

The file/directory path parameters all start with &page.mountpoint;. This is needed
for the site to work correctly in case the administrator relocates the site to a
mountpoint other than /. Be sure to preserve the mountpoint placeholder at the
beginning of the paths if you enter a different value.

8.3 Creating customized layouts
If you want to make more changes than the template parameters support you can
upload custom graphics and write your own XSLT templates.

The graphical elements are stored in two locations:

• /header-logo.gif

• /roxen-files/cms-images/

The header logo is a writable file so you can upload new content to it. Alternatively
you can set the template parameter named header-logo to point to a different image
file. To modify the other graphical elements you need to make a copy of the /roxen-
files/cms-images/ directory. Next, modify the template parameter image-path to
reflect the new location so the factory templates will find your images.

Another kind of customization involves translating the language-dependent parts of
the factory templates. All message strings, date format patterns and so on have been
collected in the /roxen-files/cms-templates/strings.xsl template. To
change it you start by making a copy of the original strings.xsl, edit the copy and
finally insert an <xsl:import> statement pointing to your file at the end of /cms-
components.xsl. Be sure that the import statement is placed after any of the
/roxen-files/ imports since you need to give your file a higher import precedence.

Using the same procedure you can override or extend any of the factory templates
handling page layout and editor component rendering. The XSLT architecture is very
flexible since it allows you to reuse template code and only provide customized code
for those template rules which you want to replace. This means that you can remove
duplicate code from the copy of the read-only template file and only keep those parts
which should override the default layout. This in turn increases the compatibility with
future updates to the factory-installed templates.

2014-03-13 Managing templates in a Basic site 40

8.4 Controlling the component editor

8.4.1 Directives in template files

Roxen CMS makes use of two special XSL files in your site to control the behavior of
the page editor:

cms-components.xsl

As seen earlier in Factory-installed template files, cms-components.xsl is the
starting point for importing component-specific templates. This is also the XSL
template that the page editor loads directly while presenting the editing interface.

By placing additional directives in this stylesheet, or any of the stylesheets it
imports, you can disable specific components from being used in a given section
of the web site.

Components are by default enabled until you add a <xsl:param> declaration of a
variable named component tag name-enable. For instance, the Link
component uses the tag <href-component>, and thus the controlling parameter
is named href-component-enable. You should give the parameter necessary
rxml: attributes to become customizable through the web-based user interface.

Which template that is loaded in the editor can be controlled by the template the
XML file uses, see Advanced control of the component editor.

All standard components already have their visibility parameters declared in the
/roxen-files/ files. For reference, here is the full declaration of href-component-
enable:

<xsl:param name="href-component-enable" rxml:type="checkbox"
 rxml:group="Component enable"
 rxml:doc="Enable the Link component"
 select="1"/>

In a similar way you can also declare which variants you want to have for a
component. This is described in the next section, Defining component variants.

cms-ckconfig.js

The rich-text editor used in Roxen CMS is based on a third-party software project
called CKEditor. This project also maintains a Wiki site with technical
documentation that can be of interest when customizing the editor. Examples of
uses include adding or removing toolbar icons and defining custom CSS styles.

Roxen CMS allows for CKEditor features to be customized by creating a cms-
ckconfig.js JavaScript definition file. The default instance of this file is /roxen-
files/cms-ckconfig.js. However, when overriding the default copy the
preferred approach is to use the following technique: Create an RXML page with
the reserved file name, which, when evaluated, inserts the original file and then
adds or redefines the standard CKEditor configuration parameters.

The benefit of this model is that future Roxen CMS versions can add more
standard parameters to the default file, and your customized versions will inherit
these parameters with no extra effort.

The step-by-step process creating the RXML file is described in a comment inside
/roxen-files/cms-ckconfig.js, but is repeated here as well:

• Create/copy cms-ckconfig.js. Place it where it can be found using the
smart search strategy.

2014-03-13 Managing templates in a Basic site 41

• Assign a content type of HTML. This ensures it will be parsed server-side by
the RXML parser.

• Add code to inherit the default file. Insert the following code fragment into the
file:

<header name="Content-Type" value="application/x-javascript"/>
<insert file="/roxen-files/cms-ckconfig.js"/>
<?noparse
 ...your custom JavaScript code here...
?>

cms-toolbar.xsl

This file gives you control over some of the main toolbar buttons in the Insite
Editor. For detailed information, see the section Controlling the Insite Editor
toolbar.

All of the aforementioned files are located using the smart search strategy employed
throughout Roxen CMS (explained in the section Where to Place Stylesheets). This
lets you customize the site's behavior in a flexible way, for example to implement sub-
sites.

8.4.2 Directives in content files

The XML file format used in the component editor allows advanced site designers to
interleave traditional XML and RXML statements together with component elements.
This can e.g. be used to produce non-standard layouts such as the two-column start
page in the Basic site. However, such layouts are often tuned to a specific set of
components and may not render correctly if unrestricted editing takes place in the
component editor.

To solve these cases the designer may want to restrict editing in one or more ways
for a particular page. This can be done using some attributes in the top-level <page-
components> element or, in some cases, a specific component element or its fields.
All actions are unlocked by default.

rxml:insert-lock="yes"

Only allowed on the top-level <page-components> element. When set to yes the
component editor will disable the insert buttons on the page.

rxml:delete-lock="yes"

Allowed on the top-level <page-components> element as well as individual
component elements. When set to yes the component editor will disable the
delete button for the corresponding component elements. Note that when set on
the top-level element the locking state cannot be overridden in any of the page
components.

rxml:move-lock="yes"

Only allowed on the top-level <page-components> element. When set to yes the
component editor will disable the arrow buttons which are used for rearranging
components.

rxml:edit-lock="yes"

Allowed on the top-level <page-components> element as well as individual
component elements and their fields. When set to yes for the whole file or a
component the component editor will disable the edit button for the
corresponding component elements, and when used on a selected component
field that field will be locked for editing.

2014-03-13 Managing templates in a Basic site 42

8.4.3 Examples on field/component locking

The first example below shows a header component where the variant field is locked
to the value 1 (but the title remains unlocked), and a Text & Picture component which
cannot be deleted.

<?xml version="1.0"?>
<page-components>

 <!-- Lock <variant> field for this header -->
 <header-component>
 <variant rxml:edit-lock="yes">1</variant>
 <title>Fixed variant</title>
 </header-component>

 <!-- Can't delete this component -->
 <picture-component rxml:delete-lock="yes">
 <variant>0</variant>
 <title>Locked for deletion</title>
 <text>Lorem ipsum.</text>
 </picture-component>

</page-components>

The second example presents a page where the existing components can be edited
but not moved or deleted. Moreover, new components cannot be inserted.

<?xml version="1.0"?>
<page-components rxml:insert-lock="yes" rxml:move-lock="yes"
 rxml:delete-lock="yes">

 <header-component/>

 <picture-component>
 <variant>0</variant>
 <title>Edit me</title>
 <text>Lorem ipsum.</text>
 </picture-component>

 <footer-component/>

</page-components>

8.5 Defining component variants

8.5.1 Purpose of variants

The majority of the components in the component editor present a list of variants
which the page author can choose from. Variants are normally small layout
variations, e.g. left/right horizontal alignment, but can be more complex if the
component developer wants to. It's possible to add, rename, remove and reorder
variants for standard components as well as your own.

Internally variants are numbered starting at zero. The user will not see this number
but the stylesheet creator uses them in the template match pattern or in the
template rule itself:

<xsl:template match="sample-component-a[variant = '0']">
 <!-- this code is only used for variant #0 -->
 ...
</xsl:template>

<xsl:template match="sample-component-b">
 <!-- code used for all variants -->

2014-03-13 Managing templates in a Basic site 43

 <xsl:if test="variant = 1">
 <!-- only variant #1 will run this code -->
 ...
 </xsl:if>
 ...
</xsl:template>

8.5.2 Configuring variants – current Roxen CMS versions

Today's Roxen CMS version lets you define variants directly in the site repository
through the use of XSL parameters. Compared to the deprecated method described
below this approach supports sub-sites in a single repository.

XSL templates should use <xsl:param> to declare variants with a name that is
constructed as component tag name-variants. Taking the Link component as an
example, the parameter is named href-component-variants.

Here is the declaration used in the factory templates for the Link component:

<xsl:param name="href-component-variants" rxml:type="text"
 rxml:group="Component variants"
 rxml:doc="Variants for the Link component"
 select="'0:Left aligned
1:Center aligned
2:Right
aligned'"/>

As seen here, the actual choices are encoded as a string which follows a special
pattern where each variant is listed as number:title, and multiple patterns are
separated with newline characters (entered as a numeric XML entity using
).

Note!

In order to activate variants declared this way, the administrator must remove all
old-style variant definitions in the Administration interface. See below for details
on how to change these settings.

8.5.3 Configuration variants – Roxen CMS version 4.0 or earlier

The following describes the means used to define component variants in older
versions of Roxen CMS. This is no longer recommended for newly created sites since
it is far less flexible than the new method.

Note!

Actions described in this section are in part performed in the Roxen
administration interface and may therefore not be accessible to all SiteBuilder
users.

The relationship between variant names and numbers is defined in the Roxen
administration interface. Go to Sites -> (site name) -> (component module) ->
Settings and you will find a module variable called Component variants. This variable
defines a list of names where each entry is prefixed by the corresponding variant
number. Edit the list to change what the page author sees in the variant pop up
menu in the component editor. Don't forget to add matching rules for new variants to
the XSLT templates using the methods shown earlier in this section.

8.6 Controlling the Insite Editor toolbar

8.6.1 Disabling toolbar commands

The main toolbar in the Insite Editor contains buttons that, among other things,
create, edit and delete pages. In a complex web site the web developer may

2014-03-13 Managing templates in a Basic site 44

determine that certain parts of the web site should follow a special set of rules when
content is added or modified; in such cases it may be preferred to disable one or
more of the standard action buttons in order to guide editors to use other means of
interacting with the site.

In the situation described above, it's not uncommon for the web developer to provide
custom buttons within the web site itself to e.g. create pages. These buttons can be
linked to RXML scripts which indirectly activate the same fundamental page creation
functionality, but gives some additional control over location, stationery choice or
similar.

For example, in a news archive it can be an advantage to give new pages a path that
is generated from today's date. Using SiteBuilder tags you get a chance to compute
the path, create the directories and finally the index.xml page in the proper place. If
editors at the same time have the familiar "New" button accessible in the toolbar,
chances are that they will not use the custom button and thereby create pages that
don't conform to the intended directory structure.

To forcefully disable buttons, create a file called cms-toolbar.xsl and include one
or more <xsl:param> declarations with the following names:

• toolbar-new-button-enable

• toolbar-edit-button-enable

• toolbar-delete-button-enable

• toolbar-publish-button-enable

• toolbar-update-button-enable

• toolbar-revert-button-enable

The <xsl:param> declaration requires a rxml:type attribute in order for Roxen
CMS to detect it properly.

Here is one example:

 <xsl:param name="toolbar-new-button-enable"
 rxml:type="checkbox" select="0"/>

Note!

The methods described in this section should not be seen as a secure way of
preventing commands to be executed. The same result can in many cases be
achieved by switching to the Content Editor environment, running RXML tags or
accessing the editor through other interfaces such as FTP or WebDAV. The goal is
rather to assist the users to choose the right tool and reduce the risk of making
errors.

When more advanced restrictions are necessary you need to make use of the
Access Control features in the product.

8.6.2 Spellchecker

It is possible to control the default dictionary with the parameter default-dictionary in
the cms-toolbar.xsl file. If the dictionary for the files language is set to "*" the
parameter will be used. This is useful in a subsite environment where each subsite
has a non-English language but all files are language less. Example:

2014-03-13 Managing templates in a Basic site 45

 <xsl:param name="default-dictionary"
 rxml:type="string" select="'nl'"/>

8.6.3 Author

It is possible to control the author wizard with the parameter author-zone in the
cms-toolbar.xsl file. If the parameter is specified the author select box will only
contain users from the specified zone. Example:

 <xsl:param name="author-zone"
 rxml:type="string" select="'Common'"/>

8.6.4 Local timezones

Roxen CMS includes support for letting subsites specify their own timezone. This only
affects date/time strings shown in the user interface when working with files in the
corresponding directories and not the output from RXML tags. Site sections that don't
have a defined timezone will use the server's timezone.

To use this feature, declare the parameter toolbar-timezone in the cms-
toolbar.xsl file. Example:

 <xsl:param name="toolbar-timezone"
 rxml:type="string" select="'GMT'"/>

8.6.5 Custom CKEditor filters

As seen in Controlling the component editor, various aspects of CKEditor can be
controlled programmatically. Another customizable feature of the editor is the HTML
cleaning that takes place when a page is saved; the default filter is used to remove
unwanted tags, harmonize tag names (e.g. rename to <i>) and more. If a
custom behavior is needed you can add your own filter and activate it with fck-
filter and/or fck-table-filter parameters in the cms-toolbar.xsl file. Here
is one example:

 <xsl:param name="fck-filter"
 rxml:type="string" select="'MyFCKFilter'"/>
 <xsl:param name="fck-table-filter"
 rxml:type="string" select="'MyFCKTableFilter'"/>

Note!

The MyFCKFilter and MyFCKTableFilter identifiers are case-sensitive. The
corresponding code needs to be added to the server installation. More details on
how to develop and install a filter are presented in CKEditor Filters.

Note!

The name FCK Editor is preserved in some parts of the product for compatibility
reasons despite the switch to CKEditor in Roxen CMS 5.4 and later.

8.6.6 Detection of simultaneous editing

Roxen CMS has full support for dealing with several users editing the same page or
file simultaneously, but in some setups this may be discouraged for various reasons.
For instance, the knowledge of the conflict resolution procedure may be limited
among the people using the CMS.

2014-03-13 Managing templates in a Basic site 46

One alternative is to apply a setting in the cms-toolbar.xsl file that will present a
warning if a user attempts to edit a page that is currently being edited by someone
else. Note that this setting will only generate a notification and won’t block editing,
but it will at least make the user aware of the situation.

Here is an example of how to define the parameter in cms-toolbar.xsl:

 <xsl:param name="toolbar-clash-prevention-enable"
 rxml:type="checkbox" select="1"/>

8.7 Advanced control of the component editor
If there is a "cms-editor-template" XSLT param defined and its value points to a
template file, that template will be used instead of cms-components.xsl template.
This can be used to:

- reduce the number of choices of which components that works on a page

- add or remove choices of available variants for specific component

- differentiate big differences in functionalities between different pages. E.g. Forms 2
pages may need special knowledge, switching to new templates and new
components and phasing out the old ones.

8.7.1 How it works:

The component editor first gets the template the XML file is attached to - in a non-
modified Basic site the template would be cms-common.xsl - and from that template
it fetches the value of the XSLT param named "cms-editor-template" that must be a
customizable XSLT param. The value must be the file name or the full path to the
template file, e.g. cms-forms2-components.xsl. If the XSLT param is empty or not
defined, "cms-components.xsl" will be used. This value will be used to locate the
template to render each component, control which components are enabled and
which variants are available for each component.

Note. Components that are not enabled may still exist on a CMS Editor XML file and
can be edited.

Example:

Two files: /foo/index.xml and /bar/index.xml uses different templates:

/foo/index.xml
 |- /cms-common.xsl ("cms-editor-template" =
"cms-components.xsl")
 |- /cms-components.xsl
 |- /roxen-files/cms-sites/4.5/application.xsl
 |- ...

/bar/index.xml
 |- /cms-forms2.xsl
 ("cms-editor-template" =
"/page-templates/common-and-forms2-components.xsl")
 |- /page-templates/common-and-forms2-components.xsl
 |- /roxen-files/cms-sites/4.5/application.xsl
 |- ...

2014-03-13 Managing templates in a Basic site 47

Both cms-forms2.xsl and cms-common.xsl share the same template structure from
the application.xsl template with one important difference; the common-and-forms2-
components.xsl and cms-components.xsl templates may have totally different values
for what components are available and which variants exists when editing the file.
They may as well have different values for which other configurable params that
affects the layout of the components as well as the whole page. The
enabling/disabling and changing the variants are done to /cms-components.xsl and
/page-templates/common-and-forms2-components.xsl, how it is done is described in
earlier chapters.

The editor cannot change which template the page should use through the Insite
Editor, that is only available in the Content Editor. But the editor can choose from
which stationery a new page is created from - this can be used. That means that,
using the the example above, you can have two stationery files of the CMS Page
Editor type in the root folder ("/"), called e.g. cms-page-stationery.xml (which comes
when created from a Basic site) and cms-forms2-stationery.xml. cms-page-
stationery.xml uses the "/cms-common.xsl" and the other stationery uses /cms-
forms2.xsl template. When a user creates a new file, the user will be presented with
a choice from which of the two stationery files the new file will be created from. The
new file will then use the same template as the stationery file, and the choice will
mean that the created page has different components enabled.

This is very flexible. As with all flexible tools they can easily make things complex.
Good knowledge on how configurable (customizable) params works and how you can
control them are important (e.g. <xsl:import href="..."
rxml:customize-params="yes|no"/>).

